Compare your dogs to TESLA Select one to begin:

SOUTH PAWS TENACIOUS TESLA

“TESLA”
SOUTH PAWS TENACIOUS TESLA

Doberman Pinscher

compare icon Compare

“V2 TRINITY”

This dog has been viewed 44 times and been given 0 wags

Genetic Breed Result

Learn how it’s done

Doberman Pinscher

Doberman Pinscher Doberman Pinscher
Doberman Pinschers are a strong and athletic breed that are built to guard and protect.
Learn More
Start a conversation! Message this dog’s owner.

Genetic Stats


Predicted Adult Weight
Genetic Age
19 human years Learn More
Based on the date of birth provided
Changes to this dog’s profile
Learn More
  • On 8/3/2020 changed name from "Viper f2 purple" to "SOUTH PAWS TENACIOUS TESLA"

Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:

Health Summary

TESLA inherited one variant that you should learn more about.

Von Willebrand Disease Type I

TESLA inherited one copy of the variant we tested

What does this result mean?

This result should not impact TESLA’s health but it could have consequences for siblings or other related dogs if they inherited two copies of the variant. We recommend discussing this result with their owners or breeders if you are in contact.

Impact on Breeding

Your dog carries this variant and will pass it on to ~50% of her offspring.

What is Von Willebrand Disease Type I?

Von Willebrand Disease (vWD) is a type of coagulopathy, a disorder of blood clotting. vWD is characterized into three types based on clinical severity, serum levels of vWF, and vWF multimer composition. Dogs with Type I vWD have low vWF levels, normal multimer composition, and variable clinical signs.

Breed-Relevant Genetic Conditions

Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MYO7A)

Identified in Doberman Pinschers

Dilated Cardiomyopathy, DCM1 (PDK4)

Identified in Doberman Pinschers

Dilated Cardiomyopathy, DCM2 (TTN)

Identified in Doberman Pinschers

Additional Genetic Conditions


Clinical Tools

Explore the genetics behind your dog’s appearance and size.
Coat Color

Coat Color

E Locus (MC1R)
No dark mask or grizzle (EE)
K Locus (CBD103)
More likely to have a patterned haircoat (kyky)
Intensity Loci LINKAGE
Any light hair likely yellow or tan (Intermediate Red Pigmentation)
A Locus (ASIP)
Black/Brown and tan coat color pattern (atat)
D Locus (MLPH)
Dark areas of hair and skin are not lightened (Dd)
B Locus (TYRP1)
Black or gray hair and skin (Bb)
Saddle Tan (RALY)
Likely saddle tan patterned (NN)
S Locus (MITF)
Likely solid colored, but may have small amounts of white (Ssp)
M Locus (PMEL)
No merle alleles (mm)
H Locus (Harlequin)
No harlequin alleles (hh)
Other Coat Traits

Other Coat Traits

Furnishings (RSPO2) LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows) (II)
Coat Length (FGF5)
Likely short or mid-length coat (GG)
Shedding (MC5R)
Likely light to moderate shedding (TT)
Hairlessness (FOXI3) LINKAGE
Very unlikely to be hairless (NN)
Hairlessness (SGK3)
Very unlikely to be hairless (NN)
Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE
Likely not albino (NN)
Coat Texture (KRT71)
Likely straight coat (CC)
Other Body Features

Other Body Features

Muzzle Length (BMP3)
Likely medium or long muzzle (CC)
Tail Length (T)
Likely normal-length tail (CC)
Hind Dewclaws (LMBR1)
Unlikely to have hind dew claws (CC)
Blue Eye Color (ALX4) LINKAGE
Less likely to have blue eyes (NN)
Back Muscling & Bulk, Large Breed (ACSL4)
Likely normal muscling (CC)
Body Size

Body Size

Body Size (IGF1)
Larger (NN)
Body Size (IGFR1)
Larger (GG)
Body Size (STC2)
Larger (TT)
Body Size (GHR - E191K)
Larger (GG)
Body Size (GHR - P177L)
Larger (CC)
Performance

Performance

Altitude Adaptation (EPAS1)
Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE
Normal food motivation (NN)

Through TESLA’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1e

Haplotype

A226

Map

A1e

SOUTH PAWS TENACIOUS TESLA’s Haplogroup

This female lineage likely stems from some of the original Central Asian wolves that were domesticated into modern dogs starting about 15,000 years ago. It seemed to be a fairly rare dog line for most of dog history until the past 300 years, when the lineage seemed to “explode” out and spread quickly. What really separates this group from the pack is its presence in Alaskan village dogs and Samoyeds. It is possible that this was an indigenous lineage brought to the Americas from Siberia when people were first starting to make that trip themselves! We see this lineage pop up in overwhelming numbers of Irish Wolfhounds, and it also occurs frequently in popular large breeds like Bernese Mountain Dogs, Saint Bernards and Great Danes. Shetland Sheepdogs are also common members of this maternal line, and we see it a lot in Boxers, too. Though it may be all mixed up with European dogs thanks to recent breeding events, its origins in the Americas makes it a very exciting lineage for sure!

A226

SOUTH PAWS TENACIOUS TESLA’s Haplotype

Part of the large A1e haplogroup, we have spotted this haplotype in village dogs in Central and South America and Papua New Guinea. Among the 10 breeds we have detected it in, we see it most frequently in Border Collies, Doberman Pinschers, and Samoyeds.

Some other Embark dogs with this haplotype:

Irish Wolfhounds are a consistent carrier of A1e.

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that TESLA inherited from her mom and dad? Check out her breed breakdown and family tree.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since TESLA is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.