Venn diagram

Compare your dogs to Whiskie Select one to begin:

“Whiskie”
Whiskie Girl at Ttown

Pomsky

No bio has been provided yet

Place of Birth

Pennsylvania, USA

Current Location

Claremore, Oklahoma, USA

From

Pennsylvania, USA

This dog has been viewed and been given 1 wag

Registration

International Pomsky Association (IPA):

Genetic Breed Result

Loading...

Pomeranian

The Pomeranian is a cocky, animated companion with an extroverted personality.

Learn More

Siberian Husky

Bred initially in Northern Siberia, the Siberian Husky is a medium-sized working dog who is quick and light on their feet. Their moderately compact and well furred body, erect ears and brush tail suggest their Northern heritage. Huskies are very active and energetic and are known for being long distance sled dogs.

Learn More

Loading...

Start a conversation! Message this dog’s owner.

Loading...

DNA Breed Origins

Breed colors:
Pomeranian
Siberian Husky

Explore

Changes to this dog’s profile
  • On 7/29/2023 changed handle from "whiskiegirlatttown" to "ttownwhiskie"

Health Summary

good icon

Good news!

Whiskie is not at increased risk for the genetic health conditions that Embark tests.

Breed-Relevant Genetic Conditions

good icon

Methemoglobinemia (CYB5R3)

Identified in Pomeranians

Progressive Retinal Atrophy, rcd3 (PDE6A)

Identified in Pomeranians

X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR)

Identified in Siberian Huskies

Day Blindness (CNGB3 Deletion, Alaskan Malamute Variant)

Identified in Siberian Huskies

Urate Kidney & Bladder Stones (SLC2A9)

Identified in Pomeranians

GM1 Gangliosidosis (GLB1 Exon 15, Alaskan Husky Variant)

Identified in Siberian Huskies

Degenerative Myelopathy, DM (SOD1A)

Identified in Siberian Huskies

Oculocutaneous Albinism, OCA (SLC45A2, Small Breed Variant)

Identified in Pomeranians

Hereditary Vitamin D-Resistant Rickets (VDR)

Identified in Pomeranians

Additional Genetic Conditions

good icon

Explore

Traits

Explore the genetics behind your dog’s appearance and size.

Coat Color

Coat Color

Other Coat Traits

Other Coat Traits

Other Body Features

Other Body Features

Body Size

Body Size

Performance

Performance

Loading...

Explore

Through Whiskie’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1a

Haplotype

A382

Map

A1a

Whiskie Girl at Ttown’s Haplogroup

A1a is the most common maternal lineage among Western dogs. This lineage traveled from the site of dog domestication in Central Asia to Europe along with an early dog expansion perhaps 10,000 years ago. It hung around in European village dogs for many millennia. Then, about 300 years ago, some of the prized females in the line were chosen as the founding dogs for several dog breeds. That set in motion a huge expansion of this lineage. It's now the maternal lineage of the overwhelming majority of Mastiffs, Labrador Retrievers and Gordon Setters. About half of Boxers and less than half of Shar-Pei dogs descend from the A1a line. It is also common across the world among village dogs, a legacy of European colonialism.

A382

Whiskie Girl at Ttown’s Haplotype

Part of the large A1a haplogroup, this haplotype occurs most frequently in Labrador Retrievers, Golden Retrievers, and Chesapeake Bay Retrievers.

Shar Pei dogs think A1a is the coolest!

Loading...

Explore

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Whiskie inherited from her mom and dad? Check out her breed breakdown.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Whiskie is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Loading...

Explore