Venn diagram

Compare your dogs to Jenga Select one to begin:

“Jenga”
TPL Game On

Labrador Retriever

No bio has been provided yet

Place of Birth

Dryden, Michigan, USA

This dog has been viewed and been given 0 wags

Registration

American Kennel Club (AKC):

Genetic Breed Result

Loading...

Labrador Retriever

The Labrador Retriever was bred for hunting and excelled in retrieving game after it was shot down. Known for its gentle disposition and loyalty, the Labrador Retriever has become a favorite of families and breeders alike.

Learn More

Loading...

Start a conversation! Message this dog’s owner.

Loading...

Explore

Health Summary

warn icon

Jenga has two variants that you should let your vet know about.

Copper Toxicosis (Attenuating)

warn icon

Jenga inherited one copy of the variant we tested

Why is this important to your vet?

Jenga has a genotype at the ATP7A gene that modifies and may help mitigate some of the symptoms from dogs with variants at ATP7B. This variant is not associated with an increased risk of any disease. As this variant resides on the X- chromosome, male dogs with one copy of the variant are better protected from copper accumulation due to the ATP7B variant than female dogs with one copy of the variant.

What is Copper Toxicosis (Attenuating)?

The ATP7A variant is considered beneficial and may be best described as a helpful modifier of the harmful copper toxicosis variant ATP7B. The ATP7A variant may help mitigate some of the symptoms of dogs with variants at ATP7B. Dogs with the ATP7A variant have not been observed to have any beneficial or harmful complications if they have two copies of the normal ATP7B variant.

Copper Toxicosis (Attenuating)

warn icon

Jenga inherited both copies of the variant we tested

Why is this important to your vet?

Jenga has a genotype at the RETN gene that modifies and may help mitigate some of the symptoms from dogs with variants at ATP7B. This variant is not associated with an increased risk of any disease.

What is Copper Toxicosis (Attenuating)?

The RETN variant is considered beneficial and may be best described as a helpful modifier of the harmful copper toxicosis variant ATP7B. The RETN variant may help mitigate some of the symptoms of dogs with variants at ATP7B. Dogs with the RETN variant have not been observed to have any beneficial or harmful complications if they have two copies of the normal ATP7B variant.

Breed-Relevant Genetic Conditions

good icon

Canine Elliptocytosis (SPTB Exon 30)

Identified in Labrador Retrievers

Pyruvate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant)

Identified in Labrador Retrievers

Progressive Retinal Atrophy, prcd (PRCD Exon 1)

Identified in Labrador Retrievers

Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)

Identified in Labrador Retrievers

Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)

Identified in Labrador Retrievers

Day Blindness (CNGA3 Exon 7, Labrador Retriever Variant)

Identified in Labrador Retrievers

Macular Corneal Dystrophy, MCD (CHST6)

Identified in Labrador Retrievers

Urate Kidney & Bladder Stones (SLC2A9)

Identified in Labrador Retrievers

Alexander Disease (GFAP)

Identified in Labrador Retrievers

Degenerative Myelopathy, DM (SOD1A)

Identified in Labrador Retrievers

Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)

Identified in Labrador Retrievers

Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)

Identified in Labrador Retrievers

Centronuclear Myopathy, CNM (PTPLA)

Identified in Labrador Retrievers

Exercise-Induced Collapse, EIC (DNM1)

Identified in Labrador Retrievers

Myotonia Congenita (CLCN1 Exon 19, Labrador Retriever Variant)

Identified in Labrador Retrievers

X-Linked Myotubular Myopathy (MTM1, Labrador Retriever Variant)

Identified in Labrador Retrievers

Copper Toxicosis (Accumulating) (ATP7B)

Identified in Labrador Retrievers

Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)

Identified in Labrador Retrievers

Hereditary Nasal Parakeratosis, HNPK (SUV39H2)

Identified in Labrador Retrievers

Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant)

Identified in Labrador Retrievers

Ehlers-Danlos Syndrome (EDS) (COL5A1, Labrador Retriever Variant)

Identified in Labrador Retrievers

Stargardt Disease (ABCA4 Exon 28, Labrador Retriever Variant)

Identified in Labrador Retrievers

Laryngeal Paralysis and Polyneuropathy (CNTNAP1, Leonberger, Saint Bernard, and Labrador Retriever variant)

Identified in Labrador Retrievers

Muscular Dystrophy-Dystroglycanopathy (LARGE1, Labrador Retriever Variant)

Identified in Labrador Retrievers

Congenital Dyserythropoietic Anemia and Polymyopathy (EHPB1L1, Labrador Retriever Variant)

Identified in Labrador Retrievers

Additional Genetic Conditions

good icon

Explore

Traits

Explore the genetics behind your dog’s appearance and size.

Coat Color

Coat Color

Other Coat Traits

Other Coat Traits

Other Body Features

Other Body Features

Body Size

Body Size

Performance

Performance

Loading...

Explore

Through Jenga’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1a

Haplotype

A382

Map

A1a

TPL Game On’s Haplogroup

A1a is the most common maternal lineage among Western dogs. This lineage traveled from the site of dog domestication in Central Asia to Europe along with an early dog expansion perhaps 10,000 years ago. It hung around in European village dogs for many millennia. Then, about 300 years ago, some of the prized females in the line were chosen as the founding dogs for several dog breeds. That set in motion a huge expansion of this lineage. It's now the maternal lineage of the overwhelming majority of Mastiffs, Labrador Retrievers and Gordon Setters. About half of Boxers and less than half of Shar-Pei dogs descend from the A1a line. It is also common across the world among village dogs, a legacy of European colonialism.

A382

TPL Game On’s Haplotype

Part of the large A1a haplogroup, this haplotype occurs most frequently in Labrador Retrievers, Golden Retrievers, and Chesapeake Bay Retrievers.

Shar Pei dogs think A1a is the coolest!

Loading...

Explore

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Jenga inherited from her mom and dad? Check out her breed breakdown.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Jenga is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Loading...

Explore