Tilly

Eastern European Village Dog

“Tilly was found dumped in a grass field in Romania with her sisters, now she lives with me in amsterdam and she’s a real fun and sweet girl, she’s very energetic and confident indoors but scared for the outside world in the city, although she changes in the park and loves the park, she loves other dogs and although she loves me and my partner she’s not as interested in other humans except for the ones we invite and she meets indoors. She has some allergies that we’re figuring out right now.”

Instagram tag
@tillyventures

Place of Birth
Romania
Current Location
Amsterdam, North Holland, Netherlands
From
Romania

This dog has been viewed 591 times and been given 0 wags

Genetic Breed Result

Learn how it’s done

Eastern European Village Dog

Village dog trace breed analysis

Village dogs often have short stretches of DNA that match purebred dogs, due to a distant common ancestor or a more recent mating between a purebred and a village dog. Tilly has short stretches of DNA in common with these breeds:

What exactly are village dogs?

Village dogs are the free-breeding, free-roaming “outside” dogs found around the world living in and around human settlements big and small. They are also known as island dogs, pariah dogs, or free-ranging dogs.

Many village dog populations precede the formation of modern breed dogs.

They make up about 3/4s of the billion or so dogs living on Earth today. They serve as trash cleaners, sentinels, and even sometimes companions while still retaining much of their freedom. Embark’s founders have studied village dogs on six continents since 2007 in their efforts to understand the history, traits, and health of the domestic dog. Through this work they have discovered the origins of the dog in Central Asia, and also identified genetic regions involved in domestication and local adaptation, such as the high altitude adaptation in Himalayan dogs. Embark is the only dog DNA test that includes diverse village dogs from around the world in its breed reference panel.

So what breeds are in my dog?

In a very real sense, Eastern European Village Dog is the actual breed of your dog. Village dogs like this descend from separate lines of dogs than the lines that have been bred into standardized breeds like Labradors and Poodles. If you trace the family tree of Tilly back, you won’t find any ancestral dogs that are part of any of those standardized breeds.

Eastern European Village Dog Eastern European Village Dog
Europe is the cradle of many dog breeds which were formed from free-breeding village dogs living in Europe for many millenia. Some of these dogs eventually became the founders of many popular dog breeds today, though most village dogs just continued living on as free-breeding village dogs even after the formation of modern breeds.
Learn More
Start a conversation! Message this dog’s humans.

Genetic Stats


Wolfiness

1.5 % HIGH Learn More

Predicted Adult Weight
Genetic Age
21 human years Learn More
Based on the date of birth provided

Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:

Village dogs have lived just about everywhere across the world for thousands of years. Long before there were any recognized dog breeds, there were village dogs around the fires and trash heaps of early human villages. Tilly is part of this ancient heritage, not descended from a specific breed, but continuing the ancient lineage of dogs that were our first, best friends.

Embark's co-founders studied Village Dogs on six continents in their efforts to understand the history, traits, and health of the domestic dog. Through this work, they discovered evidence for the origins of the dog in Central Asia , and they also identified genetic regions involved in domestication and local adaptation. As a result, Embark has the largest Village Dog reference panel of any canine genetics company.

We compared Tilly's DNA to a global panel of thousands of village dogs. This plot highlights regions of the world where Tilly's DNA is most similar to those village dogs. The areas of darkest red reflect the greatest similarity to our village dog panel.

Village Dog Map
Similarity to village dog groups around the world. Darker red reflects greater similarity.
Explore the genetics behind your dog’s appearance and size.
Base Coat Color

Base Coat Color

Dark or Light Fur
E (Extension) Locus
Can have dark fur
Brown or Black Pigment
B (Brown) Locus
Black or gray fur and skin
Color Dilution
D (Dilute) Locus
Dark (non-dilute) fur and skin
Coat Color Modifiers

Coat Color Modifiers

Hidden Patterning
K (Dominant Black) Locus
More likely to have patterned fur
Body Pattern
A (Agouti) Locus
Agouti (Wolf Sable) coat color pattern
Facial Fur Pattern
E (Extension) Locus
Can have black masking (dark facial fur)
Saddle Tan
No impact on coat pattern
White Spotting
S (White Spotting) Locus
Likely to have little to no white in coat
Merle
M (Merle) Locus
Unlikely to have merle pattern
Harlequin
No impact on coat pattern
Other Coat Traits

Other Coat Traits

Furnishings LINKAGE
Likely furnished (mustache, beard, and/or eyebrows)
Coat Length
Likely long coat
Shedding
Likely light shedding
Coat Texture
Likely wavy coat
Hairlessness (Xolo type) LINKAGE
Very unlikely to be hairless
Hairlessness (Terrier type)
Very unlikely to be hairless
Oculocutaneous Albinism Type 2 LINKAGE
Likely not albino
Other Body Features

Other Body Features

Muzzle Length
Likely medium or long muzzle
Tail Length
Likely normal-length tail
Hind Dew Claws
Unlikely to have hind dew claws
Back Muscling & Bulk (Large Breed)
Likely normal muscling
Eye Color LINKAGE
Less likely to have blue eyes
Body Size

Body Size

Body Size 1
Intermediate
Body Size 2
Larger
Body Size 3
Larger
Body Size 4
Larger
Body Size 5
Larger
Performance

Performance

Altitude Adaptation
Normal altitude tolerance
Appetite LINKAGE
Normal food motivation

Through Tilly’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1e

Haplotype

A437

Map

A1e

Tilly’s Haplogroup

This female lineage likely stems from some of the original Central Asian wolves that were domesticated into modern dogs starting about 15,000 years ago. It seemed to be a fairly rare dog line for most of dog history until the past 300 years, when the lineage seemed to “explode” out and spread quickly. What really separates this group from the pack is its presence in Alaskan village dogs and Samoyeds. It is possible that this was an indigenous lineage brought to the Americas from Siberia when people were first starting to make that trip themselves! We see this lineage pop up in overwhelming numbers of Irish Wolfhounds, and it also occurs frequently in popular large breeds like Bernese Mountain Dogs, Saint Bernards and Great Danes. Shetland Sheepdogs are also common members of this maternal line, and we see it a lot in Boxers, too. Though it may be all mixed up with European dogs thanks to recent breeding events, its origins in the Americas makes it a very exciting lineage for sure!

A437

Tilly’s Haplotype

Part of the A1e haplogroup, the A437 haplotype occurs most commonly in Brussels Griffons, Armenian Gamprs and Russell-type Terriers. We've also spotted it in East Asian Village Dogs, Middle Eastern Village Dogs and American Village Dogs.

Some other Embark dogs with this haplotype:

Irish Wolfhounds are a consistent carrier of A1e.

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Tilly inherited from her mom and dad? Check out her breed breakdown and family tree.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Tilly is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.