Embark logo

Oban

Labrador Retriever

“Leesburg Veterinary Hospital 19463 James Monroe HWY Leesburg, VA 20175 Phone: 703.777.3313”

Instagram tag
@Oban.silverlab

Place of Birth
Shenandoah, VA, USA
Current Location
Virginia, USA
From
Shenandoah, VA, USA

This dog has been viewed 493 times and been given 2 wags

Genetic Breed Result

Learn how it’s done

Labrador Retriever

100.0% Labrador Retriever
Labrador Retriever Labrador Retriever
The Labrador Retriever was bred for hunting and excelled in retrieving game after it was shot down. Known for its gentle disposition and loyalty, the Labrador Retriever has become a favorite of families and breeders alike.
Learn More
Start a conversation! Message this dog’s humans.

Genetic Stats


Wolfiness

0.6 % LOW Learn More

Predicted Adult Weight
Genetic Age
16 human years Learn More
Based on the date of birth provided
Changes to this dog’s profile
Learn More
  • On 6/25/2019 changed handle from "silverlabradir" to "silverlabrador"
  • On 6/25/2019 changed handle from "silverlab" to "silverlabradir"
  • On 6/25/2019 changed handle from "oban3" to "silverlab"

Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:

Explore by tapping the parents and grandparents.

Breed Reveal Video

Loading...

Our algorithms predict this is the most likely family tree to explain Oban’s breed mix, but this family tree may not be the only possible one.

Summary

0
AT RISK
1
CARRIER
173
CLEAR
Tap above or scroll down to see more

Clinical Traits

These clinical traits are valuable to your veterinarian and can inform the clinical decisions and diagnoses they make.

Alanine Aminotransferase Activity result: Normal
Oban has two normal alleles at ALT.

Genetic Health Conditions

A genetic health condition indicates a genetic mutation that increases the risk that an animal develops a specific disease.

Not At Risk

Good news! Oban did not test positive for any of the genetic conditions that Embark screens for.

It is still important to let your veterinarian know these results because they could help guide Oban’s diagnosis and treatment if he gets sick in the future.

Carrier for
1 genetic condition

Oban is a carrier for 1 of the genetic diseases that Embark tests for.
What does Carrier mean?

Oban has inherited a recessive allele for a genetic trait or mutation. This is not enough to cause symptoms of the disease, but is important to bear in mind if Oban ever has children.

Condition List

Progressive Retinal Atrophy, prcd
Progressive rod-cone degeneration (PRCD Exon 1)
Eyes

This retinal disease causes progressive, non-painful vision loss. The retina contains the cells, photoreceptors, that collect information about light: that is, they are t…

Common Conditions

Good news! Oban tested clear for 15 genetic conditions that are common in his breed.
Condition List

Congenital Macrothrombocytopenia
(TUBB1 Exon 1, Cavalier King Charles Spaniel Variant)
Blood

This is a benign disorder of platelet production that leads to abnormally large, sparse platelets. Affected dogs typically do not suffer any ill effects from the size or …

Canine Elliptocytosis
(SPTB Exon 30)
Blood

A benign disease that affects red blood cell shape, elliptocytosis rarely causes symptoms. Upon examination of a blood smear, however, affected dogs have elongated, oval …

Pyruvate Kinase Deficiency
(PKLR Exon 7 Labrador Variant)
Blood

This is a disease of red blood cells characterized by low energy level, jaundiced skin, and pale and cool extremities. Dogs affected with PKD have red blood cells that ha…

Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2
(TTC8)
Eyes

This retinal disease causes progressive, non-painful vision loss. The retina contains the cells, photoreceptors, that collect information about light: that is, they are t…

Progressive Retinal Atrophy - crd4/cord1
(RPGRIP1)
Eyes

This retinal disease causes progressive, non-painful vision loss. The retina contains the cells, photoreceptors, that collect information about light: that is, they are t…

Achromatopsia
(CNGA3 Exon 7 Labrador Retriever Variant)
Eyes

This is a progressive, nonpainful disorder of the retina that affects color vision and light perception. Cone cells not only register color, they allow the dog to adjust …

Macular Corneal Dystrophy, MCD
(CHST6)
Eyes

A disease of middle-aged dogs, MCD was first characterized in the Labrador Retriever. Affected dogs begin to show clouding of the eyes and visual impairment due to abnorm…

Narcolepsy
(HCRTR2 Intron 6)
Brain and Spinal Cord

A neurologic condition characterized by daytime sleepiness and fragmented sleep cycles, affected dogs also exhibit episodes of cataplexy, a sudden complete loss of muscle…

Centronuclear Myopathy
(PTPLA)
Muscular

This muscle disorder is characterized by exercise intolerance, weight loss, and muscle wasting. While abnormal tendon reflexes can be observed as early as 1 month, the sy…

Exercise-Induced Collapse
(DNM1)
Muscular

First characterized in field-trial lines of Labrador Retriever dogs, this muscle disorder can cause episodes of muscle weakness and sometimes collapse; after recovering, …

Myotubular Myopathy 1, X-linked Myotubular Myopathy, XL-MTM
(MTM1, Labrador Variant)
Muscular

This is a degenerative muscle disease first characterized in the Labrador Retriever. Affected dogs present as puppies with failure to thrive and weakness; this rapidly pr…

Congenital Myasthenic Syndrome
(COLQ)
Neuromuscular

This is a non-progressive disease characterized by episodes of exercise intolerance and weakness; some forms have been shown to respond to medical treatment. Though it ha…

Hereditary Nasal Parakeratosis
(SUV39H2)
Skin & Connective Tissues

This condition causes the skin of the nose to be overly thick and shingle-like, which can be uncomfortable for your dog. HNPK isn't usually as upsetting to the dog as it …

Oculoskeletal Dysplasia 1, Dwarfism-Retinal Dysplasia, OSD1
(COL9A3, Labrador Retriever)
Skeletal

A developmental disease described in the Labrador Retriever and the Samoyed, affected dogs can show signs very early in life and can include dramatic short-limbed dwarfis…

Skeletal Dysplasia 2, SD2
(COL11A2)
Skeletal

A disease of skeletal development, this causes dogs to have abnormally short legs but similar body lengths compared to unaffected dogs, and can be observed by the time do…

Other Conditions:
Clear of 158

Oban is clear of 158 other genetic conditions that Embark tests for.
Explore the genetics behind your dog’s appearance, size, and genetic diversity.
Base Coat Color

Base Coat Color

Dark or Light Fur
E (Extension) Locus
Can have dark fur
Brown or Black Pigment
B (Brown) Locus
Brown fur and skin
Color Dilution
D (Dilute) Locus
Fur and skin have lighter (dilute) coloration
Coat Color Modifiers

Coat Color Modifiers

Hidden Patterning
K (Dominant Black) Locus
More likely to have a mostly solid black or brown fur coat
Body Pattern
A (Agouti) Locus
No impact on coat pattern
Facial Fur Pattern
E (Extension) Locus
Can have black masking (dark facial fur)
Saddle Tan
No impact on coat pattern
Merle
M (Merle) Locus
Unlikely to have merle pattern
Other Coat Traits

Other Coat Traits

Furnishings LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows)
Coat Length
Likely short or mid-length coat
Shedding
Likely light to moderate shedding
Coat Texture
Likely straight coat
Hairlessness (Xolo type) LINKAGE
Very unlikely to be hairless
Hairlessness (Terrier type)
Very unlikely to be hairless
Oculocutaneous Albinism Type 2 LINKAGE
Likely not albino
Other Body Features

Other Body Features

Muzzle Length
Likely medium or long muzzle
Tail Length
Likely normal-length tail
Hind Dew Claws
Unlikely to have hind dew claws
Back Muscling & Bulk (Large Breed)
Likely normal muscling
Eye Color LINKAGE
Less likely to have blue eyes
Body Size

Body Size

Body Size 1
Smaller
Body Size 2
Larger
Body Size 3
Larger
Body Size 4
Larger
Body Size 5
Larger
Performance

Performance

Altitude Adaptation
Normal altitude tolerance

Through Oban’s mitochondrial DNA we can trace his mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

Haplogroup

A1a

Haplotype

A388

Map

A1a

Oban’s Haplogroup

A1a is the most common maternal lineage among Western dogs. This lineage traveled from the site of dog domestication in Central Asia to Europe along with an early dog expansion perhaps 10,000 years ago. It hung around in European village dogs for many millennia. Then, about 300 years ago, some of the prized females in the line were chosen as the founding dogs for several dog breeds. That set in motion a huge expansion of this lineage. It's now the maternal lineage of the overwhelming majority of Mastiffs, Labrador Retrievers and Gordon Setters. About half of Boxers and less than half of Shar-Pei dogs descend from the A1a line. It is also common across the world among village dogs, a legacy of European colonialism.

A388

Oban’s Haplotype

Part of the large A1a haplogroup, this haplotype occurs most frequently in Staffordshire Terriers, Labrador Retrievers, and English Bulldogs.

Some other Embark dogs with this haplotype:

Shar Pei dogs think A1a is the coolest!

Through Oban’s Y-chromosome we can trace his father’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

Haplogroup

A1a

Haplotype

H1a.8/32/43/44

Map

A1a

Oban’s Haplogroup

Some of the wolves that became the original dogs in Central Asia around 15,000 years ago came from this long and distinguished line of male dogs. After domestication, they followed their humans from Asia to Europe and then didn't stop there. They took root in Europe, eventually becoming the dogs that founded the Vizsla breed 1,000 years ago. The Vizsla is a Central European hunting dog, and all male Vizslas descend from this line. During the Age of Exploration, like their owners, these pooches went by the philosophy, "Have sail, will travel!" From the windy plains of Patagonia to the snug and homey towns of the American Midwest, the beaches of a Pacific paradise, and the broad expanse of the Australian outback, these dogs followed their masters to the outposts of empires. Whether through good fortune or superior genetics, dogs from the A1a lineage traveled the globe and took root across the world. Now you find village dogs from this line frolicking on Polynesian beaches, hanging out in villages across the Americas, and scavenging throughout Old World settlements. You can also find this "prince of patrilineages" in breeds as different as German Shepherds, Golden Retrievers, Pugs, Border Collies, Scottish Terriers, and Irish Wolfhounds. No male wolf line has been as successful as the A1a line!

H1a.8/32/43/44

Oban’s Haplotype

Part of the A1a haplogroup, the H1a.8/32/43/44 haplotype occurs most commonly in Llewellin Setters, Gordon Setters and German Wirehaired Pointers. We've also spotted it in Southeast Asian Village Dogs, European Village Dogs and East Asian Village Dogs.

Some other Embark dogs with this haplotype:

Dogs with A1a lineage travelled during European Colonial times.