Venn diagram

Compare your dogs to Sara Select one to begin:

Sara

Dalmatian

Smarter dog care powered by DNA
SHOP NOW
  • Photo of Sara, a Dalmatian  in Ohio, USA Photo of Sara, a Dalmatian  in Ohio, USA
    I've been a very good girl Santa!

“She’s so smart, loving and has a big personality. Almost human like.”

Place of Birth

Ohio, USA

Current Location

Clay, New York, USA

From

Shelby, Ohio, USA

This dog has been viewed and been given 2 wags

Genetic Breed Result

Dalmatian

Sara

embk.me/i/sara22

Dalmatian

Best known as the star of Disney’s 101 Dalmatians, this sleek and athletic dog breed has a history that goes back several hundred years. He started out as a coach dog but has also served in many other capacities, including hunter, firehouse dog, and circus performer. As charming in life as in film, he goes from gallant to goofy to gallant again in the blink of an eye, and loves to be a part of everything his family does.

Learn More

Start a conversation! Message this dog’s humans.

Genetic Stats

Wolfiness

0.6 % LOW

Predicted Adult Weight

48 lbs

Genetic Age
34 human years

Based on the date of birth provided

Explore

Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:

Explore by tapping the parents and grandparents.

Breed Reveal Video

Our algorithms predict this is the most likely family tree to explain Sara’s breed mix, but this family tree may not be the only possible one.

Embark Logo Learn more about Embark

Explore

Health Summary

danger icon

Sara is at increased risk for one genetic health condition.

Urate Kidney & Bladder Stones

danger icon

Sara inherited both copies of the variant we tested

How to interpret this result

Sara has two copies of a variant in the SLC2A9 gene and is at risk for developing HUU. If you notice Sara straining to urinate, producing urine tinged with blood, or not producing any urine at all, please seek veterinary care immediately; these are signs of urinary obstruction secondary to urolithiasis and could be life threatening.

What is Urate Kidney & Bladder Stones?

This condition causes kidney and bladder stones composed of urate. In most dogs, uric acid is converted to allantoin, an inert substance that is then excreted in the urine. Dogs with HUU have defects in the pathway that converts uric acid to allantoin. As such, uric acid builds up, crystallizes and forms urate stones in the kidney and bladder. Uric acid is an intermediate of purine metabolism. While hyperuricemia in other species (including humans) can lead to painful conditions such as gout, dogs do not develop systemic signs of hyperuricemia.

Breed-Relevant Genetic Conditions

good icon

Additional Genetic Conditions

good icon

Clinical Tools

good icon

Explore

Explore the genetics behind your dog’s appearance and size.

Base Coat Color

Base Coat Color

Dark or Light Fur
E (Extension) Locus
Can have dark fur
Red Pigment Intensity LINKAGE
I (Intensity) Loci
No impact on coat pattern
Brown or Black Pigment
B (Brown) Locus
Black or gray fur and skin
Color Dilution
D (Dilute) Locus
Dark (non-dilute) fur and skin
Coat Color Modifiers

Coat Color Modifiers

Hidden Patterning
K (Dominant Black) Locus
More likely to have a mostly solid black or brown fur coat
Body Pattern
A (Agouti) Locus
No impact on coat pattern
Facial Fur Pattern
E (Extension) Locus
Can have black masking (dark facial fur)
Saddle Tan
No impact on coat pattern
White Spotting
S (White Spotting) Locus
Likely to have large white areas in coat
Merle
M (Merle) Locus
Unlikely to have merle pattern
Harlequin
No impact on coat pattern
Other Coat Traits

Other Coat Traits

Furnishings LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows)
Coat Length
Likely short or mid-length coat
Shedding
Likely light to moderate shedding
Coat Texture
Likely straight coat
Hairlessness (Xolo type) LINKAGE
Very unlikely to be hairless
Hairlessness (Terrier type)
Very unlikely to be hairless
Oculocutaneous Albinism Type 2 LINKAGE
Likely not albino
Other Body Features

Other Body Features

Muzzle Length
Likely medium or long muzzle
Tail Length
Likely normal-length tail
Hind Dew Claws
Unlikely to have hind dew claws
Back Muscling & Bulk (Large Breed)
Likely normal muscling
Eye Color LINKAGE
Less likely to have blue eyes
Body Size

Body Size

Body Size 1
Intermediate
Body Size 2
Larger
Body Size 3
Larger
Body Size 4
Larger
Body Size 5
Larger
Performance

Performance

Altitude Adaptation
Normal altitude tolerance
Appetite LINKAGE
Normal food motivation
Embark Logo Learn more about Embark

Explore

Through Sara’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1a

Haplotype

A381

Map

A1a

Sara’s Haplogroup

A1a is the most common maternal lineage among Western dogs. This lineage traveled from the site of dog domestication in Central Asia to Europe along with an early dog expansion perhaps 10,000 years ago. It hung around in European village dogs for many millennia. Then, about 300 years ago, some of the prized females in the line were chosen as the founding dogs for several dog breeds. That set in motion a huge expansion of this lineage. It's now the maternal lineage of the overwhelming majority of Mastiffs, Labrador Retrievers and Gordon Setters. About half of Boxers and less than half of Shar-Pei dogs descend from the A1a line. It is also common across the world among village dogs, a legacy of European colonialism.

A381

Sara’s Haplotype

Part of the large A1a haplogroup, this haplotype occurs most frequently in German Shepherd Dogs, Doberman Pinschers, and Dachshunds.

Some other Embark dogs with this haplotype:

Shar Pei dogs think A1a is the coolest!

Embark Logo Learn more about Embark

Explore

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Sara inherited from her mom and dad? Check out her breed breakdown and family tree.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Sara is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Embark Logo Learn more about Embark

Explore