Venn diagram

Compare your dogs to Bixby Select one to begin:

“Bixby”
Rosewyn's Bixby Creek Bridge

Collie (Scottish-Type)

Smarter dog care powered by DNA
SHOP NOW

“Puppy 4 of 10 in Rosewyn's "Bridges to the Past" 2018 litter”

Place of Birth

Cecilia, KY, USA

This dog has been viewed and been given 0 wags

Registration

Scottish Collie Preservation Society: OTSC-F-1240
Microchip: 956000010398325

Genetic Breed Result

Collie (Scottish-Type)

Collie (Scottish-Type)

Scottish-Type Collies, also called Old-Time Scotch Collies, are landrace collies bred first and foremost to excel at their work. Formalized breeds such as the Collie and Shetland Sheepdog were developed from this original landrace population. While these dogs are happy to herd, they’re quite versatile and also enjoy sports such as flyball and agility.

Learn More

Start a conversation! Message this dog’s owner.

Genetic Stats

Predicted Adult Weight

48 lbs

Genetic Age
32 human years

Based on the date of birth provided

Explore

Changes to this dog’s profile
  • On 1/27/2021 changed name from "Rosewyn's Bixby Creek" to "Rosewyn's Bixby Creek Bridge"
  • On 1/27/2021 changed handle from "rosewynsbixbycreek" to "rosewynsbixbycreekbridge"

Would you like more information? You can contact us at:

Health Summary

warn icon

Bixby inherited one variant that you should learn more about.

Collie Eye Anomaly

warn icon

Bixby inherited one copy of the variant we tested

What does this result mean?

This result should not impact Bixby’s health but it could have consequences for siblings or other related dogs if they inherited two copies of the variant. We recommend discussing this result with their owners or breeders if you are in contact.

Impact on Breeding

Your dog carries this variant and will pass it on to ~50% of her offspring.

What is Collie Eye Anomaly?

Named for its high prevalence in Collie dogs, Collie Eye Anomaly (CEA) is more correctly termed choroidal hypoplasia. The choroid anchors the retina to the underlying structures and supplies it with oxygen and nourishment. CEA is a developmental disease of the choroid.

Breed-Relevant Genetic Conditions

good icon

Multiple Drug Sensitivity (ABCB1)

Identified in Scottish-Type Collies

Additional Genetic Conditions

good icon

Clinical Tools

good icon

Explore

Explore the genetics behind your dog’s appearance and size.

Coat Color

Coat Color

E Locus (MC1R)
No dark mask or grizzle (EE)
K Locus (CBD103)
More likely to have a patterned haircoat (kyky)
Intensity Loci LINKAGE
Any light hair likely yellow or tan (Intermediate Red Pigmentation)
A Locus (ASIP)
Fawn Sable coat color pattern (ayat)
D Locus (MLPH)
Dark areas of hair and skin are not lightened (DD)
B Locus (TYRP1)
Black or gray hair and skin (BB)
Saddle Tan (RALY)
Not expressed (NI)
S Locus (MITF)
Likely solid colored, but may have small amounts of white (Ssp)
M Locus (PMEL)
No merle alleles (mm)
H Locus (Harlequin)
No harlequin alleles (hh)
Other Coat Traits

Other Coat Traits

Furnishings (RSPO2) LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows) (II)
Coat Length (FGF5)
Likely long coat (TT)
Shedding (MC5R)
Likely heavy/seasonal shedding (CT)
Hairlessness (FOXI3) LINKAGE
Very unlikely to be hairless (NN)
Hairlessness (SGK3)
Very unlikely to be hairless (NN)
Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE
Likely not albino (NN)
Coat Texture (KRT71)
Likely straight coat (CC)
Other Body Features

Other Body Features

Muzzle Length (BMP3)
Likely medium or long muzzle (CC)
Tail Length (T)
Likely normal-length tail (CC)
Hind Dewclaws (LMBR1)
Unlikely to have hind dew claws (CC)
Blue Eye Color (ALX4) LINKAGE
Less likely to have blue eyes (NN)
Back Muscling & Bulk, Large Breed (ACSL4)
Likely normal muscling (CC)
Body Size

Body Size

Body Size (IGF1)
Larger (NN)
Body Size (IGFR1)
Larger (GG)
Body Size (STC2)
Larger (TT)
Body Size (GHR - E191K)
Intermediate (GA)
Body Size (GHR - P177L)
Larger (CC)
Performance

Performance

Altitude Adaptation (EPAS1)
Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE
Normal food motivation (NN)
Embark Logo Learn more about Embark

Explore

Through Bixby’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

B1

Haplotype

B1c

Map

B1

Rosewyn's Bixby Creek Bridge’s Haplogroup

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

B1c

Rosewyn's Bixby Creek Bridge’s Haplotype

Part of the large B1 haplogroup, we have detected this haplotype in Mexico and Lebanon village dogs. Among the 12 breeds that we have spotted this haplotype in, it occurs most frequently in Border Collies, Australian Shepherd Dogs, and West Highland white Terriers.

Some other Embark dogs with this haplotype:

The B1 haplogroup can be found in village dogs like the Peruvian Village Dog, pictured above.

Embark Logo Learn more about Embark

Explore

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Bixby inherited from her mom and dad? Check out her breed breakdown.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Bixby is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Embark Logo Learn more about Embark

Explore