Venn diagram

Compare your dogs to Remi Select one to begin:

“Remi”
Remington

Poodle (Small)

Smarter dog care powered by DNA
SHOP NOW

No bio has been provided yet

Place of Birth

Cub Run, KY, USA

Current Location

Houma, Louisiana, USA

From

Cub Run, KY, USA

This dog has been viewed and been given 0 wags

Registration

CKC: PD-05356792
Microchip: 985141003339463

Genetic Breed Result

Poodle (Small)

Poodle (Small)

A highly intelligent and playful dog, Miniature and Toy Poodles make for great lap dogs and companions.

Learn More

Start a conversation! Message this dog’s owner.

Genetic Stats

Predicted Adult Weight

11 lbs

Genetic Age
15 human years

Based on the date of birth provided

Explore

Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:

Health Summary

danger icon

Remi is at increased risk for one genetic health condition.

And inherited two variants that you should learn more about.

Intervertebral Disc Disease (Type I)

danger icon

Remi inherited both copies of the variant we tested

How to interpret this result

Remi has two copies of an FGF4 retrogene on chromosome 12. In some breeds such as Beagles, Cocker Spaniels, and Dachshunds (among others) this variant is found in nearly all dogs. While those breeds are known to have an elevated risk of IVDD, many dogs in those breeds never develop IVDD. For mixed breed dogs and purebreds of other breeds where this variant is not as common, risk for Type I IVDD is greater for individuals with this variant than for similar dogs.

What is Intervertebral Disc Disease (Type I)?

Type I Intervertebral Disc Disease (IVDD) is a back/spine issue that refers to a health condition affecting the discs that act as cushions between vertebrae. With Type I IVDD, affected dogs can have a disc event where it ruptures or herniates towards the spinal cord. This pressure on the spinal cord causes neurologic signs which can range from a wobbly gait to impairment of movement. Chondrodystrophy (CDDY) refers to the relative proportion between a dog’s legs and body, wherein the legs are shorter and the body longer. There are multiple different variants that can cause a markedly chondrodystrophic appearance as observed in Dachshunds and Corgis. However, this particular variant is the only one known to also increase the risk for IVDD.

Progressive Retinal Atrophy, prcd

warn icon

Remi inherited one copy of the variant we tested

What does this result mean?

This result should not impact Remi’s health but it could have consequences for siblings or other related dogs if they inherited two copies of the variant. We recommend discussing this result with their owners or breeders if you are in contact.

Impact on Breeding

Your dog carries this variant and will pass it on to ~50% of his offspring.

What is Progressive Retinal Atrophy, prcd?

PRA-prcd is a retinal disease that causes progressive, non-painful vision loss. The retina contains cells, called photoreceptors, that collect information about light and send signals to the brain. There are two types of photoreceptors: rods, for night vision and movement, and cones, for day vision and color. This type of PRA leads to early loss of rod cells, leading to night blindness before day blindness.

ALT Activity

warn icon

Remi inherited one copy of the variant we tested

Why is this important to your vet?

Remi has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Remi has this genotype, as ALT is often used as an indicator of liver health and Remi is likely to have a lower than average resting ALT activity. As such, an increase in Remi’s ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is ALT Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

Breed-Relevant Genetic Conditions

good icon

Von Willebrand Disease Type I, Type I vWD (VWF)

Identified in Small Poodles

GM2 Gangliosidosis (HEXB, Poodle Variant)

Identified in Small Poodles

Neonatal Encephalopathy with Seizures, NEWS (ATF2)

Identified in Small Poodles

Osteochondrodysplasia (SLC13A1, Poodle Variant)

Identified in Small Poodles

Additional Genetic Conditions

good icon

Explore

Explore the genetics behind your dog’s appearance and size.

Coat Color

Coat Color

E Locus (MC1R)
No dark mask or grizzle (Ee)
K Locus (CBD103)
More likely to have a patterned haircoat (kyky)
Intensity Loci LINKAGE
Any light hair likely yellow or tan (Intermediate Red Pigmentation)
A Locus (ASIP)
Black/Brown and tan coat color pattern (atat)
D Locus (MLPH)
Dark areas of hair and skin are not lightened (DD)
Cocoa (HPS3)
No co alleles, not expressed (NN)
B Locus (TYRP1)
Black or gray hair and skin (Bb)
Saddle Tan (RALY)
Not saddle tan patterned (II)
S Locus (MITF)
Likely solid colored, but may have small amounts of white (Ssp)
M Locus (PMEL)
No merle alleles (mm)
R Locus (USH2A) LINKAGE
Likely no impact on coat pattern (rr)
H Locus (Harlequin)
No harlequin alleles (hh)
Other Coat Traits

Other Coat Traits

Furnishings (RSPO2) LINKAGE
Likely furnished (mustache, beard, and/or eyebrows) (FF)
Coat Length (FGF5)
Likely long coat (TT)
Shedding (MC5R)
Likely light shedding (TT)
Hairlessness (FOXI3) LINKAGE
Very unlikely to be hairless (NN)
Hairlessness (SGK3)
Very unlikely to be hairless (NN)
Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE
Likely not albino (NN)
Coat Texture (KRT71)
Likely curly coat (TT)
Other Body Features

Other Body Features

Muzzle Length (BMP3)
Likely medium or long muzzle (AC)
Tail Length (T)
Likely normal-length tail (CC)
Hind Dewclaws (LMBR1)
Likely to have hind dew claws (CT)
Blue Eye Color (ALX4) LINKAGE
Less likely to have blue eyes (NN)
Back Muscling & Bulk, Large Breed (ACSL4)
Likely normal muscling (CC)
Body Size

Body Size

Body Size (IGF1)
Smaller (II)
Body Size (IGFR1)
Smaller (AA)
Body Size (STC2)
Intermediate (TA)
Body Size (GHR - E191K)
Smaller (AA)
Body Size (GHR - P177L)
Larger (CC)
Performance

Performance

Altitude Adaptation (EPAS1)
Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE
Normal food motivation (NN)
Embark Logo Learn more about Embark

Explore

Through Remi’s mitochondrial DNA we can trace his mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

Haplogroup

A1b

Haplotype

A361/409/611

Map

A1b

Remington’s Haplogroup

This female lineage was very likely one of the original lineages in the wolves that were first domesticated into dogs in Central Asia about 15,000 years ago. Since then, the lineage has been very successful and travelled the globe! Dogs from this group are found in ancient Bronze Age fossils in the Middle East and southern Europe. By the end of the Bronze Age, it became exceedingly common in Europe. These dogs later became many of the dogs that started some of today's most popular breeds, like German Shepherds, Pugs, Whippets, English Sheepdogs and Miniature Schnauzers. During the period of European colonization, the lineage became even more widespread as European dogs followed their owners to far-flung places like South America and Oceania. It's now found in many popular breeds as well as village dogs across the world!

A361/409/611

Remington’s Haplotype

Part of the A1b haplogroup, this haplotype occurs most frequently in German Shepherd Dogs, Poodles, and Shiloh Shepherds.

Some other Embark dogs with this haplotype:

A1b is the most common haplogroup found in German Shepherds.

Embark Logo Learn more about Embark

Explore

Through Remi’s Y-chromosome we can trace his father’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

Haplogroup

A1a

Haplotype

H1a.45

Map

A1a

Remington’s Haplogroup

Some of the wolves that became the original dogs in Central Asia around 15,000 years ago came from this long and distinguished line of male dogs. After domestication, they followed their humans from Asia to Europe and then didn't stop there. They took root in Europe, eventually becoming the dogs that founded the Vizsla breed 1,000 years ago. The Vizsla is a Central European hunting dog, and all male Vizslas descend from this line. During the Age of Exploration, like their owners, these pooches went by the philosophy, "Have sail, will travel!" From the windy plains of Patagonia to the snug and homey towns of the American Midwest, the beaches of a Pacific paradise, and the broad expanse of the Australian outback, these dogs followed their masters to the outposts of empires. Whether through good fortune or superior genetics, dogs from the A1a lineage traveled the globe and took root across the world. Now you find village dogs from this line frolicking on Polynesian beaches, hanging out in villages across the Americas, and scavenging throughout Old World settlements. You can also find this "prince of patrilineages" in breeds as different as German Shepherds, Golden Retrievers, Pugs, Border Collies, Scottish Terriers, and Irish Wolfhounds. No male wolf line has been as successful as the A1a line!

H1a.45

Remington’s Haplotype

Part of the A1a haplogroup, this haplotype occurs most frequently in mixed breed dogs.

Some other Embark dogs with this haplotype:

Dogs with A1a lineage travelled during European Colonial times.

Embark Logo Learn more about Embark

Explore