Venn diagram

Compare your dogs to Penelope Select one to begin:

Penelope

Mixed Ancestry

Smarter dog care powered by DNA
SHOP NOW

“Caramel with white mismarks”

Current Location

Webster, FL, USA

From

Kenneth City, FL, USA

This dog has been viewed and been given 0 wags

Genetic Breed Result

Poodle (Small)

A highly intelligent and playful dog, Miniature and Toy Poodles make for great lap dogs and companions.

Learn More

Poodle (Standard)

Known as the national dog breed of France, poodles were developed in Germany and are known for their loyalty and distinctive coat.

Learn More

Cocker Spaniel

Cocker Spaniels are handsome and intelligent hunting dogs that are also well-suited to life as a loving family pet.

Learn More

Labrador Retriever

The Labrador Retriever was bred for hunting and excelled in retrieving game after it was shot down. Known for its gentle disposition and loyalty, the Labrador Retriever has become a favorite of families and breeders alike.

Learn More

Start a conversation! Message this dog’s owner.

Genetic Stats

Predicted Adult Weight

24 lbs

Genetic Age
16 human years

Based on the date of birth provided

DNA Breed Origins

Breed colors:
Poodle (Small)
Poodle (Standard)
Cocker Spaniel
Labrador Retriever

Explore

Would you like more information? You can contact us at:

Health Summary

danger icon

Penelope is at increased risk for one genetic health condition.

Intervertebral Disc Disease (Type I)

danger icon

Penelope inherited both copies of the variant we tested

How to interpret this result

Penelope has two copies of an FGF4 retrogene on chromosome 12. In some breeds such as Beagles, Cocker Spaniels, and Dachshunds (among others) this variant is found in nearly all dogs. While those breeds are known to have an elevated risk of IVDD, many dogs in those breeds never develop IVDD. For mixed breed dogs and purebreds of other breeds where this variant is not as common, risk for Type I IVDD is greater for individuals with this variant than for similar dogs.

What is Intervertebral Disc Disease (Type I)?

Type I Intervertebral Disc Disease (IVDD) is a back/spine issue that refers to a health condition affecting the discs that act as cushions between vertebrae. With Type I IVDD, affected dogs can have a disc event where it ruptures or herniates towards the spinal cord. This pressure on the spinal cord causes neurologic signs which can range from a wobbly gait to impairment of movement. Chondrodystrophy (CDDY) refers to the relative proportion between a dog’s legs and body, wherein the legs are shorter and the body longer. There are multiple different variants that can cause a markedly chondrodystrophic appearance as observed in Dachshunds and Corgis. However, this particular variant is the only one known to also increase the risk for IVDD.

Breed-Relevant Genetic Conditions

good icon

Von Willebrand Disease Type I, Type I vWD (VWF)

Identified in Standard Poodles and Small Poodles

Canine Elliptocytosis (SPTB Exon 30)

Identified in Labrador Retrievers

Pyruvate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant)

Identified in Labrador Retrievers

Progressive Retinal Atrophy, prcd (PRCD Exon 1)

Identified in Cocker Spaniels, Labrador Retrievers, and more

Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)

Identified in Labrador Retrievers

Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)

Identified in Labrador Retrievers

Day Blindness (CNGA3 Exon 7, Labrador Retriever Variant)

Identified in Labrador Retrievers

Macular Corneal Dystrophy, MCD (CHST6)

Identified in Labrador Retrievers

Urate Kidney & Bladder Stones (SLC2A9)

Identified in Labrador Retrievers

Familial Nephropathy (COL4A4 Exon 3, Cocker Spaniel Variant)

Identified in Cocker Spaniels

Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Whippet and English Springer Spaniel Variant)

Identified in Cocker Spaniels

GM2 Gangliosidosis (HEXB, Poodle Variant)

Identified in Standard Poodles and Small Poodles

Alexander Disease (GFAP)

Identified in Labrador Retrievers

Degenerative Myelopathy, DM (SOD1A)

Identified in Standard Poodles

Neonatal Encephalopathy with Seizures, NEWS (ATF2)

Identified in Standard Poodles and Small Poodles

Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)

Identified in Labrador Retrievers

Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)

Identified in Cocker Spaniels

Ulrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)

Identified in Labrador Retrievers

Centronuclear Myopathy (PTPLA)

Identified in Labrador Retrievers

Exercise-Induced Collapse (DNM1)

Identified in Cocker Spaniels and Labrador Retrievers

X-Linked Myotubular Myopathy (MTM1, Labrador Retriever Variant)

Identified in Labrador Retrievers

Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)

Identified in Labrador Retrievers

Hereditary Nasal Parakeratosis, HNPK (SUV39H2)

Identified in Labrador Retrievers

Osteochondrodysplasia (SLC13A1, Poodle Variant)

Identified in Standard Poodles and Small Poodles

Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant)

Identified in Labrador Retrievers

Additional Genetic Conditions

good icon

Clinical Tools

good icon

Explore

Explore the genetics behind your dog’s appearance and size.

Coat Color

Coat Color

E Locus (MC1R)
No dark hairs anywhere (ee)
K Locus (CBD103)
Not expressed (KBky)
Intensity Loci LINKAGE
Any pigmented hair likely yellow or tan (Intermediate Red Pigmentation)
A Locus (ASIP)
Not expressed (ata)
D Locus (MLPH)
Not expressed (DD)
Cocoa (HPS3)
No co alleles, not expressed (NN)
B Locus (TYRP1)
Likely brown colored nose/feet (bb)
Saddle Tan (RALY)
Not expressed (NN)
S Locus (MITF)
Likely solid colored, but may have small amounts of white (Ssp)
M Locus (PMEL)
No merle alleles (mm)
R Locus (USH2A) LINKAGE
Likely no impact on coat pattern (rr)
H Locus (Harlequin)
No harlequin alleles (hh)
Other Coat Traits

Other Coat Traits

Furnishings (RSPO2) LINKAGE
Likely furnished (mustache, beard, and/or eyebrows) (FF)
Coat Length (FGF5)
Likely long coat (TT)
Shedding (MC5R)
Likely light shedding (CT)
Hairlessness (FOXI3) LINKAGE
Very unlikely to be hairless (NN)
Hairlessness (SGK3)
Very unlikely to be hairless (NN)
Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE
Likely not albino (NN)
Coat Texture (KRT71)
Likely wavy coat (CT)
Other Body Features

Other Body Features

Muzzle Length (BMP3)
Likely medium or long muzzle (AC)
Tail Length (T)
Likely normal-length tail (CC)
Hind Dewclaws (LMBR1)
Unlikely to have hind dew claws (CC)
Blue Eye Color (ALX4) LINKAGE
Less likely to have blue eyes (NN)
Back Muscling & Bulk, Large Breed (ACSL4)
Likely normal muscling (CC)
Body Size

Body Size

Body Size (IGF1)
Smaller (II)
Body Size (IGFR1)
Larger (GG)
Body Size (STC2)
Larger (TT)
Body Size (GHR - E191K)
Larger (GG)
Body Size (GHR - P177L)
Larger (CC)
Performance

Performance

Altitude Adaptation (EPAS1)
Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE
Normal food motivation (NN)
Embark Logo Learn more about Embark

Explore

Through Penelope’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1a

Haplotype

A382

Map

A1a

Penelope’s Haplogroup

A1a is the most common maternal lineage among Western dogs. This lineage traveled from the site of dog domestication in Central Asia to Europe along with an early dog expansion perhaps 10,000 years ago. It hung around in European village dogs for many millennia. Then, about 300 years ago, some of the prized females in the line were chosen as the founding dogs for several dog breeds. That set in motion a huge expansion of this lineage. It's now the maternal lineage of the overwhelming majority of Mastiffs, Labrador Retrievers and Gordon Setters. About half of Boxers and less than half of Shar-Pei dogs descend from the A1a line. It is also common across the world among village dogs, a legacy of European colonialism.

A382

Penelope’s Haplotype

Part of the large A1a haplogroup, this haplotype occurs most frequently in Labrador Retrievers, Golden Retrievers, and Chesapeake Bay Retrievers.

Some other Embark dogs with this haplotype:

Shar Pei dogs think A1a is the coolest!

Embark Logo Learn more about Embark

Explore

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Penelope inherited from her mom and dad? Check out her breed breakdown.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Penelope is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Embark Logo Learn more about Embark

Explore