Venn diagram

Compare your dogs to Onyx Select one to begin:

Onyx

Smarter dog care powered by DNA
SHOP NOW

No bio has been provided yet

Place of Birth

Auvergne, France

Current Location

Planches, Normandie, France

From

Auvergne, France

This dog has been viewed and been given 2 wags

Genetic Breed Result

Embark Supermutt analysis

What’s in that Supermutt? There may be small amounts of DNA from this distant ancestor:

Start a conversation! Message this dog’s owner.

Genetic Stats

Predicted Adult Weight

69 lbs

Genetic Age
33 human years

Based on the date of birth provided

DNA Breed Origins

Breed colors:
German Shepherd Dog
Gray Wolf
Siberian Husky
Alaskan Malamute
Unresolved

Explore

Would you like more information? You can contact us at:

Explore the genetics behind your dog’s appearance and size.

Coat Color

Coat Color

E Locus (MC1R)
No dark mask or grizzle (EE)
K Locus (CBD103)
More likely to have a patterned haircoat (kyky)
Intensity Loci LINKAGE
Any light hair likely yellow or tan (Intermediate Red Pigmentation)
A Locus (ASIP)
Agouti (Wolf Sable) coat color pattern (awat)
D Locus (MLPH)
Dark areas of hair and skin are not lightened (DD)
B Locus (TYRP1)
Black or gray hair and skin (BB)
Saddle Tan (RALY)
Not expressed (NI)
S Locus (MITF)
Likely to have little to no white in coat (SS)
M Locus (PMEL)
No merle alleles (mm)
H Locus (Harlequin)
No harlequin alleles (hh)
Other Coat Traits

Other Coat Traits

Furnishings (RSPO2) LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows) (II)
Coat Length (FGF5)
Likely short or mid-length coat (GG)
Shedding (MC5R)
Likely heavy/seasonal shedding (CC)
Hairlessness (FOXI3) LINKAGE
Very unlikely to be hairless (NN)
Hairlessness (SGK3)
Very unlikely to be hairless (NN)
Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE
Likely not albino (NN)
Coat Texture (KRT71)
Likely straight coat (CC)
Other Body Features

Other Body Features

Muzzle Length (BMP3)
Likely medium or long muzzle (CC)
Tail Length (T)
Likely normal-length tail (CC)
Hind Dewclaws (LMBR1)
Unlikely to have hind dew claws (CC)
Blue Eye Color (ALX4) LINKAGE
Less likely to have blue eyes (NN)
Back Muscling & Bulk, Large Breed (ACSL4)
Likely normal muscling (CC)
Body Size

Body Size

Body Size (IGF1)
Larger (NN)
Body Size (IGFR1)
Larger (GG)
Body Size (STC2)
Larger (TT)
Body Size (GHR - E191K)
Larger (GG)
Body Size (GHR - P177L)
Larger (CC)
Performance

Performance

Altitude Adaptation (EPAS1)
Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE
Normal food motivation (NN)
Embark Logo Learn more about Embark

Explore

Through Onyx’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A2

Haplotype

A29a

Map

A2

Onyx’s Haplogroup

A2 is a very ancient maternal line. Most likely it was one of the major female lines that contributed to the very first domesticated dogs in Central Asia about 15,000 years ago. Some of the line stayed in Central Asia to the present day, and frequently appear as Tibetan Mastiffs and Akitas. Those that escaped the mountains of Central Asia sought out other cold spots, and are now found among Alaskan Malamutes and Siberian Huskies. This lineage is also occasionally found in several common Western breeds, such as German Shepherds and Labrador Retrievers. Curiously, all New Guinea Singing Dogs descend from this line. These are an ancient and very interesting breed found in the mountains of Papua New Guinea. Unfortunately, they are now endangered. They are closely related to the Australian dingo, so you could say its cousins are dingos! This line is also common in village dogs in Southeast and East Asia. Unlike many other lineages, A2 did not spread across the whole world, probably because it did not have the opportunity to hitch its wagon to European colonialism - or because these dogs just prefer hanging out in mountains, tundras, islands, and other hard-to-reach places!

A29a

Onyx’s Haplotype

Part of the A2 haplogroup, this haplotype occurs most commonly in Siberian Huskies, Alaskan Malamutes, Labrador Retrievers, and village dogs from Alaska.

Some other Embark dogs with this haplotype:

Dingos commonly possess this haplogroup.

Embark Logo Learn more about Embark

Explore

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Onyx inherited from her mom and dad? Check out her breed breakdown.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Onyx is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Embark Logo Learn more about Embark

Explore