“Prim”
Now And Forever Odessa Joy

Shih Tzu

No bio has been provided yet

This dog has been viewed 22 times and been given 0 wags

Registration

Ukraine Kennel Union: UKU.0388092

Genetic Breed Result

Learn how it’s done

Shih Tzu

Shih Tzu Shih Tzu
This ancient breed is the perfect lapdog. Sweet and easygoing, they want nothing more than to be close to their humans.
Learn More
Start a conversation! Message this dog’s owner.

Genetic Stats


Predicted Adult Weight
Genetic Age
28 human years Learn More
Based on the date of birth provided

Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:

Health Summary

Prim inherited two variants that you should learn more about.

Degenerative Myelopathy, DM

Prim inherited one copy of the variant we tested

What does this result mean?

This result should not impact Prim’s health but it could have consequences for siblings or other related dogs if they inherited two copies of the variant. We recommend discussing this result with their owners or breeders if you are in contact.

Impact on Breeding

This result should be taken into account as part of your breeding program. Prim will pass this variant to ~50% of her offspring.

What is Degenerative Myelopathy, DM?

The dog equivalent of Amyotrophic Lateral Sclerosis, or Lou Gehrig’s disease, DM is a progressive degenerative disorder of the spinal cord. Because the nerves that control the hind limbs are the first to degenerate, the most common clinical signs are back muscle wasting and gait abnormalities.


Bald Thigh Syndrome

Prim inherited one copy of the variant we tested

What does this result mean?

This result should not impact Prim’s health but it could have consequences for siblings or other related dogs if they inherited two copies of the variant. We recommend discussing this result with their owners or breeders if you are in contact.

Impact on Breeding

This result should be taken into account as part of your breeding program. Prim will pass this variant to ~50% of her offspring.

What is Bald Thigh Syndrome?

A cosmetic condition common to sighthounds characterized by hair loss on the thighs. It is caused by a structural abnormality of the hair follicle.

Breed-Relevant Genetic Conditions

Prekallikrein Deficiency (KLKB1 Exon 8)

Identified in Shih Tzus

Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12)

Identified in Shih Tzus

Additional Genetic Conditions


Clinical Tools

Explore the genetics behind your dog’s appearance and size.
Coat Color

Coat Color

E Locus (MC1R)
Can have a melanistic mask (EmE)
K Locus (CBD103)
More likely to have a mostly solid black or brown coat (KBky)
Intensity Loci LINKAGE
No impact on coat pattern (Intermediate Red Pigmentation)
A Locus (ASIP)
Not expressed (ayat)
D Locus (MLPH)
Dark areas of hair and skin are not lightened (DD)
B Locus (TYRP1)
Black or gray hair and skin (BB)
Saddle Tan (RALY)
Not expressed (NI)
S Locus (MITF)
Likely flash, parti, piebald, or extreme white (spsp)
M Locus (PMEL)
No merle alleles (mm)
H Locus (Harlequin)
No harlequin alleles (hh)
Other Coat Traits

Other Coat Traits

Furnishings (RSPO2) LINKAGE
Likely furnished (mustache, beard, and/or eyebrows) (FF)
Coat Length (FGF5)
Likely long coat (TT)
Shedding (MC5R)
Likely light shedding (CT)
Hairlessness (FOXI3) LINKAGE
Very unlikely to be hairless (NN)
Hairlessness (SGK3)
Very unlikely to be hairless (NN)
Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE
Likely not albino (NN)
Coat Texture (KRT71)
Likely wavy coat (CC)
Other Body Features

Other Body Features

Muzzle Length (BMP3)
Likely medium or long muzzle (AC)
Tail Length (T)
Likely normal-length tail (CC)
Hind Dewclaws (LMBR1)
Unlikely to have hind dew claws (CC)
Blue Eye Color (ALX4) LINKAGE
Less likely to have blue eyes (NN)
Back Muscling & Bulk, Large Breed (ACSL4)
Likely normal muscling (CC)
Body Size

Body Size

Body Size (IGF1)
Smaller (II)
Body Size (IGFR1)
Larger (GG)
Body Size (STC2)
Smaller (AA)
Body Size (GHR - E191K)
Smaller (AA)
Body Size (GHR - P177L)
Intermediate (CT)
Performance

Performance

Altitude Adaptation (EPAS1)
Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE
Normal food motivation (NN)

Through Prim’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

B1

Haplotype

B81

Map

B1

Now And Forever Odessa Joy’s Haplogroup

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

B81

Now And Forever Odessa Joy’s Haplotype

Part of the large B1 haplogroup, this haplotype occurs most frequently in Shih Tzus, Chihuahuas, and Poodles.

Some other Embark dogs with this haplotype:

The B1 haplogroup can be found in village dogs like the Peruvian Village Dog, pictured above.

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Prim inherited from her mom and dad? Check out her breed breakdown and family tree.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Prim is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.