Venn diagram

Compare your dogs to Niki Select one to begin:

“Niki”
Niki

Schipperke

Smarter dog care powered by DNA
SHOP NOW

“Niki has Congenital Heart Failure, Immune-Mediated Hemolytic Anemia in Dogs (IMHA) and Hemivertebra. T4 hemivertebra with spinal cord compression from T2 through T4)”

This dog has been viewed and been given 3 wags

Registration

AKC: NP260811

Genetic Breed Result

Niki

“Niki”
Niki

Schipperke
100.0% Schipperke

Schipperke

The Schipperke is a small spitz-looking breed from Belgium. These guys were used as watch dogs and ratters, but today they can primarily be found as charming companions.

Learn More

Start a conversation! Message this dog’s owner.

Genetic Stats

Predicted Adult Weight

10 lbs

Genetic Age
74 human years

Based on the date of birth provided

Explore

Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:

Explore by tapping the parents and grandparents.

Our algorithms predict this is the most likely family tree to explain Niki’s breed mix, but this family tree may not be the only possible one.

Embark Logo Learn more about Embark

Explore

Health Summary

warn icon

Niki has one variant that you should let your vet know about.

ALT Activity

warn icon

Niki inherited both copies of the variant we tested

Why is this important to your vet?

Niki has two copies of a variant in the GPT gene and is likely to have a lower than average baseline ALT activity. ALT is a commonly used measure of liver health on routine veterinary blood chemistry panels. As such, your veterinarian may want to watch for changes in Niki's ALT activity above their current, healthy, ALT activity. As an increase above Niki’s baseline ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is ALT Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

Breed-Relevant Genetic Conditions

good icon

Progressive Retinal Atrophy, prcd (PRCD Exon 1)

Identified in Schipperkes

Additional Genetic Conditions

good icon

Explore

Explore the genetics behind your dog’s appearance and size.

Coat Color

Coat Color

E Locus (MC1R)
No dark mask or grizzle (EE)
K Locus (CBD103)
More likely to have a mostly solid black or brown coat (KBky)
Intensity Loci LINKAGE
No impact on coat pattern (Intermediate Red Pigmentation)
A Locus (ASIP)
Not expressed (aa)
D Locus (MLPH)
Dark areas of hair and skin are not lightened (DD)
B Locus (TYRP1)
Black or gray hair and skin (BB)
S Locus (MITF)
Likely to have little to no white in coat (SS)
H Locus (Harlequin)
hh
Other Coat Traits

Other Coat Traits

Furnishings (RSPO2) LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows) (II)
Coat Length (FGF5)
Likely short or mid-length coat (GT)
Shedding (MC5R)
Likely heavy/seasonal shedding (CC)
Hairlessness (FOXI3) LINKAGE
Very unlikely to be hairless (NN)
Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE
Likely not albino (NN)
Coat Texture (KRT71)
Likely straight coat (CC)
Other Body Features

Other Body Features

Muzzle Length (BMP3)
Likely medium or long muzzle (CC)
Tail Length (T)
Likely normal-length tail (CC)
Hind Dewclaws (LMBR1)
Unlikely to have hind dew claws (CC)
Blue Eye Color (ALX4) LINKAGE
Less likely to have blue eyes (NN)
Body Size

Body Size

Body Size (IGF1)
Smaller (II)
Body Size (IGFR1)
Larger (GG)
Body Size (STC2)
Larger (TT)
Body Size (GHR - E191K)
Intermediate (GA)
Body Size (GHR - P177L)
Larger (CC)
Performance

Performance

Altitude Adaptation (EPAS1)
Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE
Normal food motivation (NN)
Embark Logo Learn more about Embark

Explore

Through Niki’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

B1

Haplotype

B1b

Map

B1

Niki’s Haplogroup

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

B1b

Niki’s Haplotype

Part of the large B1 haplogroup, we see this haplotype in village dogs across the world, including those from Central America, the Middle East, South Asia, and the French Polynesian Islands. Among the 31 breed dogs we see it in, we see it in Poodles, Otterhounds, and Labrador Retrievers. It is also our most commonly-sampled Golden Retriever haplotype!

Some other Embark dogs with this haplotype:

The B1 haplogroup can be found in village dogs like the Peruvian Village Dog, pictured above.

Embark Logo Learn more about Embark

Explore

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Niki inherited from her mom and dad? Check out her breed breakdown and family tree.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Niki is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Embark Logo Learn more about Embark

Explore