Embark logo

Kiska

Siberian Husky

No bio has been provided yet

This dog has been viewed 47 times and been given 0 wags

Registration

AKC: WS58672801

Genetic Breed Result

Learn how it’s done

Siberian Husky

Siberian Husky Siberian Husky
Bred initially in Northern Siberia, the Siberian Husky is a medium-sized working dog who is quick and light on their feet. Their moderately compact and well furred body, erect ears and brush tail suggest their Northern heritage. Huskies are very active and energetic and are known for being long distance sled dogs.
Learn More
Start a conversation! Message this dog’s owner.

Genetic Stats


Predicted Adult Weight
Genetic Age
28 human years Learn More
Based on the date of birth provided
Changes to this dog’s profile
Learn More
  • On 11/5/2018 changed handle from "ladykiskaofthemidnightsun" to "kiskamsp"
  • On 11/5/2018 changed name from "Lady Kiska of the Midnight Sun" to "Kiska"

Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:

Health Summary

Kiska has one variant that you should let your vet know about.

ALT Activity

Kiska inherited one copy of the variant we tested

Why is this important to your vet?

Kiska has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Kiska has this genotype, as ALT is often used as an indicator of liver health and Kiska is likely to have a lower than average resting ALT activity. As such, an increase in Kiska’s ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is ALT Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the blood stream.

Breed-Relevant Genetic Conditions

GM1 Gangliosidosis (GLB1 Exon 15 Alaskan Husky Variant)

Identified in Siberian Huskies

Additional Genetic Conditions

Explore the genetics behind your dog’s appearance, size, and genetic diversity.
Coat Color

Coat Color

E Locus (MC1R)
No dark mask or grizzle (EE)
K Locus (CBD103)
More likely to have a patterned haircoat (kyky)
A Locus (ASIP)
Agouti (Wolf Sable) coat color pattern (awa)
D Locus (MLPH)
Dark areas of hair and skin are not lightened (DD)
B Locus (TYRP1)
Black or gray hair and skin (BB)
Other Coat Traits

Other Coat Traits

Furnishings (RSPO2) LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows) (II)
Coat Length (FGF5)
Likely short or mid-length coat (GG)
Shedding (MC5R)
Likely heavy/seasonal shedding (CC)
Coat Texture (KRT71)
Coat would likely be curly or wavy if long (CT)
Hairlessness (FOXI3) LINKAGE
Very unlikely to be hairless (NN)
Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE
Likely not albino (NN)
Other Body Features

Other Body Features

Muzzle Length (BMP3)
Likely medium or long muzzle (CC)
Tail Length (T)
Likely normal-length tail (CC)
Hind Dewclaws (LMBR1)
Likely to have hind dew claws (CT)
Blue Eye Color (ALX4) LINKAGE
Likely to have blue eyes or partial blue eyes (DupDup)
Body Size

Body Size

Body Size (IGF1)
Larger (NN)
Body Size (IGFR1)
Larger (GG)
Body Size (STC2)
Larger (TT)
Body Size (GHR - E191K)
Larger (GG)
Body Size (GHR - P177L)
Larger (CC)
Performance

Performance

Altitude Adaptation (EPAS1)
Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE
Normal food motivation (NN)

Through Kiska’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A2

Haplotype

A29a

Map

A2

Kiska’s Haplogroup

A2 is a very ancient maternal line. Most likely it was one of the major female lines that contributed to the very first domesticated dogs in Central Asia about 15,000 years ago. Some of the line stayed in Central Asia to the present day, and frequently appear as Tibetan Mastiffs and Akitas. Those that escaped the mountains of Central Asia sought out other cold spots, and are now found among Alaskan Malamutes and Siberian Huskies. This lineage is also occasionally found in several common Western breeds, such as German Shepherds and Labrador Retrievers. Curiously, all New Guinea Singing Dogs descend from this line. These are an ancient and very interesting breed found in the mountains of Papua New Guinea. Unfortunately, they are now endangered. They are closely related to the Australian dingo, so you could say its cousins are dingos! This line is also common in village dogs in Southeast and East Asia. Unlike many other lineages, A2 did not spread across the whole world, probably because it did not have the opportunity to hitch its wagon to European colonialism - or because these dogs just prefer hanging out in mountains, tundras, islands, and other hard-to-reach places!

A29a

Kiska’s Haplotype

Part of the A2 haplogroup, this haplotype occurs most commonly in Siberian Huskies, Alaskan Malamutes, Labrador Retrievers, and village dogs from Alaska.

Some other Embark dogs with this haplotype:

Dingos commonly possess this haplogroup.

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Kiska inherited from her mom and dad? Check out her breed breakdown and family tree.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Kiska is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.