Kimber

No bio has been provided yet

This dog has been viewed 45 times and been given 0 wags

Genetic Breed Result

Learn how it’s done
82.0% Gray Wolf
7.5% Alaskan Malamute
7.3% German Shepherd Dog
3.2% Siberian Husky
Start a conversation! Message this dog’s owner.

Genetic Stats


Predicted Adult Weight
Genetic Age
17 human years Learn More
Based on the date of birth provided

DNA Breed Origins

What’s this?
Breed colors:
Gray Wolf
Alaskan Malamute
German Shepherd Dog
Siberian Husky
Changes to this dog’s profile
Learn More
  • On 9/29/2020 changed handle from "kimber95" to "kimber2020"

Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:

Health Summary

Kimber inherited one variant that you should learn more about.

And one variant that you should tell your vet about.

Platelet factor X receptor deficiency, Scott Syndrome

Kimber inherited one copy of the variant we tested

What does this result mean?

This result should not impact Kimber’s health but it could have consequences for siblings or other related dogs if they inherited two copies of the variant. We recommend discussing this result with their owners or breeders if you are in contact.

Impact on Breeding

Your dog carries this variant and will pass it on to ~50% of her offspring.

What is Platelet factor X receptor deficiency, Scott Syndrome?

Canine Scott Syndrome is a defect in platelet function leading to impaired secondary hemostasis. Secondary hemostasis occurs after a platelet "plug" has formed. Its role is to make the plug stable by adding fibrin to the clot. Dogs with CSS have platelets that cannot signal in response to stimuli to induce platelet activation or death.


ALT Activity

Kimber inherited one copy of the variant we tested

Why is this important to your vet?

Kimber has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Kimber has this genotype, as ALT is often used as an indicator of liver health and Kimber is likely to have a lower than average resting ALT activity. As such, an increase in Kimber’s ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is ALT Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

Breed-Relevant Genetic Conditions

Multiple Drug Sensitivity (MDR1)

Identified in German Shepherd Dogs

Factor VII Deficiency (F7 Exon 5)

Identified in Alaskan Malamutes

Hemophilia A (F8 Exon 11, Shepherd Variant 1)

Identified in German Shepherd Dogs

Hemophilia A (F8 Exon 1, Shepherd Variant 2)

Identified in German Shepherd Dogs

Canine Leukocyte Adhesion Deficiency Type III, CLADIII (FERMT3)

Identified in German Shepherd Dogs

X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR)

Identified in Siberian Huskies

Day Blindness (CNGA3 Exon 7 German Shepherd Variant)

Identified in German Shepherd Dogs

Urate Kidney & Bladder Stones (SLC2A9)

Identified in German Shepherd Dogs

Anhidrotic Ectodermal Dysplasia (EDA Intron 8)

Identified in German Shepherd Dogs

Renal Cystadenocarcinoma and Nodular Dermatofibrosis (FLCN Exon 7)

Identified in German Shepherd Dogs

Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3)

Identified in German Shepherd Dogs

GM1 Gangliosidosis (GLB1 Exon 15 Alaskan Husky Variant)

Identified in Siberian Huskies

Degenerative Myelopathy, DM (SOD1A)

Identified in German Shepherd Dogs

Polyneuropathy, NDRG1 Malamute Variant (NDRG1 Exon 4)

Identified in Alaskan Malamutes

Additional Genetic Conditions

Explore the genetics behind your dog’s appearance and size.
Coat Color

Coat Color

E Locus (MC1R)
No dark mask or grizzle (EE)
K Locus (CBD103)
More likely to have a patterned haircoat (kyky)
A Locus (ASIP)
Fawn Sable coat color pattern (ayaw)
D Locus (MLPH)
Dark areas of hair and skin are not lightened (DD)
B Locus (TYRP1)
Black or gray hair and skin (BB)
Saddle Tan (RALY)
Not expressed (NN)
S Locus (MITF)
Likely flash, parti, piebald, or extreme white (spsp)
M Locus (PMEL)
No merle alleles (mm)
H Locus (Harlequin)
No harlequin alleles (hh)
Other Coat Traits

Other Coat Traits

Furnishings (RSPO2) LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows) (II)
Coat Length (FGF5)
Likely short or mid-length coat (GG)
Shedding (MC5R)
Likely heavy/seasonal shedding (CC)
Coat Texture (KRT71)
Likely straight coat (CC)
Hairlessness (FOXI3) LINKAGE
Very unlikely to be hairless (NN)
Hairlessness (SGK3)
Very unlikely to be hairless (NN)
Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE
Likely not albino (NN)
Other Body Features

Other Body Features

Muzzle Length (BMP3)
Likely medium or long muzzle (CC)
Tail Length (T)
Likely normal-length tail (CC)
Hind Dewclaws (LMBR1)
Unlikely to have hind dew claws (CC)
Blue Eye Color (ALX4) LINKAGE
Less likely to have blue eyes (NN)
Back Muscling & Bulk, Large Breed (ACSL4)
Likely normal muscling (CC)
Body Size

Body Size

Body Size (IGF1)
Larger (NN)
Body Size (IGFR1)
Larger (GG)
Body Size (STC2)
Larger (TT)
Body Size (GHR - E191K)
Intermediate (GA)
Body Size (GHR - P177L)
Larger (CC)
Performance

Performance

Altitude Adaptation (EPAS1)
Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE
Normal food motivation (NN)

Through Kimber’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1d

Haplotype

A41

Map

A1d

Kimber’s Haplogroup

This female lineage can be traced back about 15,000 years to some of the original Central Asian wolves that were domesticated into modern dogs. The early females that represent this lineage were likely taken into Eurasia, where they spread rapidly. As a result, many modern breed and village dogs from the Americas, Africa, through Asia and down into Oceania belong to this group! This widespread lineage is not limited to a select few breeds, but the majority of Rottweilers, Afghan Hounds and Wirehaired Pointing Griffons belong to it. It is also the most common female lineage among Papillons, Samoyeds and Jack Russell Terriers. Considering its occurrence in breeds as diverse as Afghan Hounds and Samoyeds, some of this is likely ancient variation. But because of its presence in many modern European breeds, much of its diversity likely can be attributed to much more recent breeding.

A41

Kimber’s Haplotype

Part of the large A1d haplogroup, we have not spotted this haplotype in village dogs yet. We do see it in 3 breeds: Alaskan Malamutes, Bichon Frises, and Posavac Hounds.

Some other Embark dogs with this haplotype:

The vast majority of Rottweilers have the A1d haplogroup.

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Kimber inherited from her mom and dad? Check out her breed breakdown and family tree.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Kimber is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.