Embark logo

“Journey”
GCH CH Knockout Any Way You Want It

Chihuahua

“Multiple group placing AKC Grand Champion.”

Place of Birth
Bayfield, CO, USA
Current Location
Bayfield, CO, USA
From
Bayfield, CO, USA

This dog has been viewed 36 times and been given 1 wag

Registration

AKC: TS35568601

Genetic Breed Result

Learn how it’s done

Chihuahua

Chihuahua Chihuahua
Chihuahuas have a huge personality that defies their tiny frame, known to be highly active and intelligent canines.
Learn More
Start a conversation! Message this dog’s owner.

Genetic Stats


Predicted Adult Weight
Genetic Age
29 human years Learn More
Based on the date of birth provided
Changes to this dog’s profile
Learn More
  • On 5/20/2020 changed name from "Journey" to "GCH CH Knockout Any Way You Want It"

Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:

Health Summary

Journey has one variant that you should let your vet know about.

ALT Activity

Journey inherited one copy of the variant we tested

Why is this important to your vet?

Journey has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Journey has this genotype, as ALT is often used as an indicator of liver health and Journey is likely to have a lower than average resting ALT activity. As such, an increase in Journey’s ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is ALT Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

Breed-Relevant Genetic Conditions

Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cavalier King Charles Spaniel Variant)

Identified in Chihuahuas

Progressive Retinal Atrophy, prcd (PRCD Exon 1)

Identified in Chihuahuas

Progressive Retinal Atrophy - crd4/cord1 (RPGRIP1)

Identified in Chihuahuas

Neuronal Ceroid Lipofuscinosis (MFSD8)

Identified in Chihuahuas

Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10)

Identified in Chihuahuas

Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12)

Identified in Chihuahuas

Additional Genetic Conditions

Explore the genetics behind your dog’s appearance and size.
Coat Color

Coat Color

E Locus (MC1R)
No dark mask or grizzle (EE)
K Locus (CBD103)
More likely to have a patterned haircoat (kyky)
A Locus (ASIP)
Fawn Sable coat color pattern (ayat)
D Locus (MLPH)
Dark areas of hair and skin are not lightened (DD)
B Locus (TYRP1)
Black or gray hair and skin (BB)
Saddle Tan (RALY)
Not expressed (NI)
M Locus (PMEL)
No merle alleles (mm)
Other Coat Traits

Other Coat Traits

Furnishings (RSPO2) LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows) (II)
Coat Length (FGF5)
Likely short or mid-length coat (GT)
Shedding (MC5R)
Likely heavy/seasonal shedding (CT)
Coat Texture (KRT71)
Likely straight coat (CC)
Hairlessness (FOXI3) LINKAGE
Very unlikely to be hairless (NN)
Hairlessness (SGK3)
Very unlikely to be hairless (NN)
Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE
Likely not albino (NN)
Other Body Features

Other Body Features

Muzzle Length (BMP3)
Likely medium or long muzzle (AC)
Tail Length (T)
Likely normal-length tail (CC)
Hind Dewclaws (LMBR1)
Unlikely to have hind dew claws (CC)
Blue Eye Color (ALX4) LINKAGE
Less likely to have blue eyes (NN)
Back Muscling & Bulk, Large Breed (ACSL4)
Likely normal muscling (CC)
Body Size

Body Size

Body Size (IGF1)
Smaller (II)
Body Size (IGFR1)
Larger (GG)
Body Size (STC2)
Smaller (AA)
Body Size (GHR - E191K)
Smaller (AA)
Body Size (GHR - P177L)
Smaller (TT)
Performance

Performance

Altitude Adaptation (EPAS1)
Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE
Normal food motivation (NN)

Through Journey’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

B1

Haplotype

B81

Map

B1

GCH CH Knockout Any Way You Want It’s Haplogroup

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

B81

GCH CH Knockout Any Way You Want It’s Haplotype

Part of the large B1 haplogroup, this haplotype occurs most frequently in Shih Tzus, Chihuahuas, and Poodles.

Some other Embark dogs with this haplotype:

The B1 haplogroup can be found in village dogs like the Peruvian Village Dog, pictured above.

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Journey inherited from her mom and dad? Check out her breed breakdown and family tree.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Journey is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.