Venn diagram

Compare your dogs to Zoe Select one to begin:

“Zoe”
JNB's Golden Huntress Zoe

Labradoodle

No bio has been provided yet

This dog has been viewed and been given 0 wags

Genetic Breed Result

Loading...

Poodle (Standard)

Known as the national dog breed of France, poodles were developed in Germany and are known for their loyalty and distinctive coat.

Learn More

Labrador Retriever

The Labrador Retriever was bred for hunting and excelled in retrieving game after it was shot down. Known for its gentle disposition and loyalty, the Labrador Retriever has become a favorite of families and breeders alike.

Learn More

Loading...

Start a conversation! Message this dog’s owner.

Loading...

DNA Breed Origins

Breed colors:
Poodle (Standard)
Labrador Retriever

Explore

Health Summary

warn icon

Zoe inherited one variant that you should learn more about.

Exercise-Induced Collapse, EIC

warn icon

Zoe inherited one copy of the variant we tested

What does this result mean?

This variant should not impact Zoe’s health. This variant is inherited in an autosomal recessive manner, meaning that a dog needs two copies of the variant to show signs of this condition. Zoe is unlikely to develop this condition due to this variant because she only has one copy of the variant.

Impact on Breeding

Your dog carries this variant and will pass it on to ~50% of her offspring. You can email breeders@embarkvet.com to discuss with a genetic counselor how the genotype results should be applied to a breeding program.

What is Exercise-Induced Collapse, EIC?

EIC has been linked to a mutation in the DNM1 gene, which codes for the protein dynamin. In the neuron, dynamin trucks neurotransmitter-filled vesicles from the cell body, where they are generated, to the dendrites. It is hypothesized in dogs affected with EIC, the mutation in DNM1 disrupts efficient neurotransmitter release, leading to a cessation in signalling and EIC.

Breed-Relevant Genetic Conditions

good icon

Von Willebrand Disease Type I, Type I vWD (VWF)

Identified in Standard Poodles

Canine Elliptocytosis (SPTB Exon 30)

Identified in Labrador Retrievers

Pyruvate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant)

Identified in Labrador Retrievers

Progressive Retinal Atrophy, prcd (PRCD Exon 1)

Identified in Labrador Retrievers and Standard Poodles

Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)

Identified in Labrador Retrievers

Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)

Identified in Labrador Retrievers

Day Blindness (CNGA3 Exon 7, Labrador Retriever Variant)

Identified in Labrador Retrievers

Macular Corneal Dystrophy, MCD (CHST6)

Identified in Labrador Retrievers

Urate Kidney & Bladder Stones (SLC2A9)

Identified in Labrador Retrievers

GM2 Gangliosidosis (HEXB, Poodle Variant)

Identified in Standard Poodles

Alexander Disease (GFAP)

Identified in Labrador Retrievers

Degenerative Myelopathy, DM (SOD1A)

Identified in Labrador Retrievers and Standard Poodles

Neonatal Encephalopathy with Seizures, NEWS (ATF2)

Identified in Standard Poodles

Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)

Identified in Labrador Retrievers

Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)

Identified in Labrador Retrievers

Centronuclear Myopathy, CNM (PTPLA)

Identified in Labrador Retrievers

X-Linked Myotubular Myopathy (MTM1, Labrador Retriever Variant)

Identified in Labrador Retrievers

Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)

Identified in Labrador Retrievers

Hereditary Nasal Parakeratosis, HNPK (SUV39H2)

Identified in Labrador Retrievers

Osteochondrodysplasia (SLC13A1, Poodle Variant)

Identified in Standard Poodles

Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant)

Identified in Labrador Retrievers

Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12)

Identified in Standard Poodles

Additional Genetic Conditions

good icon

Explore

Traits

Explore the genetics behind your dog’s appearance and size.

Coat Color

Coat Color

Other Coat Traits

Other Coat Traits

Other Body Features

Other Body Features

Body Size

Body Size

Performance

Performance

Loading...

Explore

Through Zoe’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1a

Haplotype

A400

Map

A1a

JNB's Golden Huntress Zoe’s Haplogroup

A1a is the most common maternal lineage among Western dogs. This lineage traveled from the site of dog domestication in Central Asia to Europe along with an early dog expansion perhaps 10,000 years ago. It hung around in European village dogs for many millennia. Then, about 300 years ago, some of the prized females in the line were chosen as the founding dogs for several dog breeds. That set in motion a huge expansion of this lineage. It's now the maternal lineage of the overwhelming majority of Mastiffs, Labrador Retrievers and Gordon Setters. About half of Boxers and less than half of Shar-Pei dogs descend from the A1a line. It is also common across the world among village dogs, a legacy of European colonialism.

A400

JNB's Golden Huntress Zoe’s Haplotype

Part of the A1a haplogroup, this haplotype occurs most frequently in mixed breed dogs.

Shar Pei dogs think A1a is the coolest!

Loading...

Explore

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Zoe inherited from her mom and dad? Check out her breed breakdown.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Zoe is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Loading...

Explore