What is Embark?

Emily

         1 wag    Give a wag!

See what’s hidden in the pages of Emily’s DNA story.

“Emily is a one year old recue mutt. She is full of energy, very smart and very sassy. She enjoys playing fetch, running, swimming, chasing birds and going to work on the golf course with us.”

This dog has been viewed 446 times and been given 1 wag

Start a conversation! Log in to send a direct message to this dog’s owner.

What’s your dog’s story? Find out with Embark!

Genetic Stats

Wolfiness: 1.7 % HIGH
Predicted Adult Weight: 64 lbs
Genetic Age: 31 human years

Emily’s Mix Match Buddies

See how closely Emily’s breed mix matches other Embark dogs — a Mix Match of 100 is a perfect breed mix match

Breed Mix By Chromosome

Our advanced test identifies from where Emily inherited every part of the chromosome pairs in her genome. Each chromosome section is colored to represent the breed that it comes from.

Explore more

Swipe left and right to explore more results, or choose a category below

Family tree

>
Explore an interactive family tree and get a picture of Emily’s family.

Traits

>
Genes for coat color and type, body size and shape, and other characteristics.

Breed Families

>
Dog breeds have been created over time for work and companionship. Find out about other dog breeds related to the breeds found in Emily.

Maternal Haplotype

>
Through the DNA inherited from Emily’s mother we can trace her ancestry back to where dogs and people first became friends. Find out how far Emily’s family has traveled.

Paternal Haplotype

>
The Y-Chromosome is only passed down from father to son. Emily’s DNA includes a story of where her father’s ancestors came from. We’ll show you more about how we categorize his ancestors all based of the science of genetics.

Let us know and we will contact Emily’s owner and make sure she is reunited with her family soon! Thank you for helping out our furry friends.

What’s your dog’s story?

Now that you have explored what’s behind Emily find out what your dog’s DNA has to tell you. Embark tells you more about your dog than you ever thought possible. Are you ready? Let’s go!

 
Family Tree From Embark PARENTS GRANDPARENTS GREAT GRANDPARENTS Australian Cattle Dog mix Mixed Australian Cattle Dog German Shepherd Dog mix Beagle mix Rottweiler / Pembroke Welsh Corgi mix Australian Cattle Dog Australian Cattle Dog German Shepherd Dog Mixed Beagle Beagle mix Rottweiler Pembroke Welsh Corgi mix
Explore by tapping your dog’s parents and grand parents.

Our algorithms predict this is the most likely family tree to explain Emily’s breed mix, but this family tree may not be the only possible one.

Explore more

Swipe left and right to explore more results, or choose a category below

Traits

>
Genes for coat color and type, body size and shape, and other characteristics.

Breed Families

>
Dog breeds have been created over time for work and companionship. Find out about other dog breeds related to the breeds found in Emily.

Maternal Haplotype

>
Through the DNA inherited from Emily’s mother we can trace her ancestry back to where dogs and people first became friends. Find out how far Emily’s family has traveled.

Paternal Haplotype

>
The Y-Chromosome is only passed down from father to son. Emily’s DNA includes a story of where her father’s ancestors came from. We’ll show you more about how we categorize his ancestors all based of the science of genetics.

What’s your dog’s story?

Now that you have explored what’s behind Emily find out what your dog’s DNA has to tell you. Embark tells you more about your dog than you ever thought possible. Are you ready? Let’s go!

Coat Color

A number of genetic loci are known to affect coat color in dogs, and they all interact. In some cases, other genetic effects may also influence color and pattern.

Some other Embark dogs with this Coat Color genotype:

E Locus (Mask, Grizzle, Recessive Red)
EE or Ee or ee
Chromosome 5

Controls the characteristic melanistic mask seen in the German Shepherd and Pug as well as the grizzled "widow's peak" of the Afghan and Borzoi. Melanistic mask (Em) is dominant to grizzle (Eg) which is dominant to black (E) and red (e). Dogs that are EE or Ee are able to produce normal black pigment, but its distribution will be dependent on the genotypes at the K and A Loci. Dogs that are ee will be a shade of red or cream regardless of their genotype at K and A. The shade of red, which can range from a deep copper like the Irish Setter to the near-white of some Golden Retrievers, is dependent on other genetic factors including the Intensity (I) Locus, which has yet to be genetically mapped.

Want to help us map I Locus? If you haven't already, complete your ee pup's Embark profile with a photo! Remember, a picture is worth a thousand words!

Citations: Schmutz et al 2003 , Dreger and Schmutz 2010 ,

More information: http://www.doggenetics.co.uk/masks.html

K Locus (Dominant Black)
kyky
Chromosome 16

Causes a dominant black coat. Dogs with a dominant KB allele have black coats regardless of their genotype at the A locus; the coat color of dogs homozygous for the recessive ky allele are controlled by A locus. Alleles: KB > ky

Citations: Candille et al 2007

More information: http://www.doggenetics.co.uk/black.htm

A Locus (Agouti, Sable)
aya or ayat
Chromosome 24

Determines whether hair pigment is produced in a banded red and black pattern or solid black. Fawn or sable (ay) is dominant to wolf sable (aw) which is dominant to black-and-tan (at), which is in turn dominant to recessive black (a).

Citations: Berryere et al 2005 , Dreger and Schmutz 2011 ,

More information: http://www.doggenetics.co.uk/tan.html

D Locus (Dilute, Blue, Fawn)
DD
Chromosome 25

Lightens a black coat to blue and a red coat to buff. A dilute phenotype requires two copies of the recessive d allele.

Citations: Drogemuller et al 2007

More information: http://www.doggenetics.co.uk/dilutes.html

B Locus (Brown, Chocolate, Liver, Red)
BB
Chromosome 11

Lightens a black coat to brown, chocolate or liver. The brown phenotype requires two copies of the recessive b allele. Red or cream dogs that carry two b alleles remain red or cream but have brown noses and footpads.

Citations: Schmutz et al 2002

More information: http://www.doggenetics.co.uk/liver.html

Other Coat Traits

Furnishings, shedding and curls are all genetic! And they all interact, too. In fact, the combination of these genetic loci explain the coat phenotypes of 90% of AKC registered dog breeds.

For more information on the genetics of coat types you can refer to https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897713/figure/F3/

Some other Embark dogs with this Coat Traits genotype:

Long Haircoat (FGF5)
GG
Chromosome 32

The FGF5 gene is known to affect hair length in many different species, including cats, dogs, mice, and humans! The "T" allele confers a long, silky haircoat as observed in the Yorkshire Terrier and the Long Haired Whippet. The ancestral "G" allele causes a shorter coat as seen in the Boxer or the American Staffordshire Terrier.

Citations: Housley & Venta 2006 , Cadieu et al 2010

Shedding (MC5R)
CC
Chromosome 1

Affects shedding propensity in non-wire-haired dogs. Dogs with the ancestral C allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with one or more T allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be low shedders. Dogs with furnished/wire-haired coats tend to be low shedders regardless of their MC5R genotype.

Citations: Hayward et al 2016

Curly Coat (KRT71)
CT
Chromosome 27

Causes the curly coat characteristic of Poodles and Bichons Frises. Dogs need at least one copy of the "T" allele to have a wavy or curly coat; the ancestral "C" allele is associated with a straight coat.

Citations: Cadieu et al 2010

Other Body Features

Brachycephaly (BMP3)
AC
Chromosome 32

Affects skull size and shape. Many brachycephalic or "smushed face” breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived A allele. Mesocephalic (Staffordshire Terrier, Labrador) and dolichocephalic (Whippet, Collie) dogs have one, or more commonly two, copies of the ancestral C allele. At least five different genes affect snout length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes.

Citations: Schoenbeck et al 2012

Hind Dewclaws (LMBR1)
CC
Chromosome 16

Common in certain breeds, hind dewclaws are extra, nonfunctional digits located midway between your dog's paw and hock. Dogs with at least one copy of the T allele have about a 50% of chance of having hind dewclaws.

Citations: Park et al 2008

Body Size

Body size is a complex trait that is affected by both genetic and environmental variation. Our genetic analysis includes genes that, together, explain over 80% of the variation in dog body size. It does not account for runting or stunting; nor does it account for the interactions between various genes both known and unknown.

Some other Embark dogs with this Body Size genotype:

Body Size - IGF1
NI
Chromosome 15

The "I" allele is associated with smaller size.

Citations: Sutter et al 2007

Body Size - IGF1R
GG
Chromosome 3

The "A" allele is associated with smaller size.

Citations: Hoopes et al 2012

Body Size - STC2
TT
Chromosome 4

The "A" allele is associated with smaller size.

Citations: Rimbault et al 2013

Body Size - GHR (E195K)
GA
Chromosome 4

The "A" allele is associated with smaller size.

Citations: Rimbault et al 2013

Body Size - GHR (P177L)
CC
Chromosome 4

The "T" allele is associated with smaller size.

Citations: Rimbault et al 2013

Performance

Altitude Adaptation (EPAS1)
GG
Chromosome 10

Confers hypoxia tolerance. Dogs with at least one A allele are more tolerant of high altitude environments. This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.

Citations: Gou et al 2014

Explore more

Swipe left and right to explore more results, or choose a category below

Family tree

>
Explore an interactive family tree and get a picture of Emily’s family.

Breed Families

>
Dog breeds have been created over time for work and companionship. Find out about other dog breeds related to the breeds found in Emily.

Maternal Haplotype

>
Through the DNA inherited from Emily’s mother we can trace her ancestry back to where dogs and people first became friends. Find out how far Emily’s family has traveled.

Paternal Haplotype

>
The Y-Chromosome is only passed down from father to son. Emily’s DNA includes a story of where her father’s ancestors came from. We’ll show you more about how we categorize his ancestors all based of the science of genetics.

What’s your dog’s story?

Now that you have explored what’s behind Emily find out what your dog’s DNA has to tell you. Embark tells you more about your dog than you ever thought possible. Are you ready? Let’s go!

DNA shows us the unique path to each of today’s recognized breeds by exposing the relatedness between them.
Australian Cattle Dog
6 related breeds
Australian Cattle Dog
A classic cattle dog, Australian Cattle Dogs were developed from a mixture of breeds in Australia in the 19th century, and still maintain their energetic herding instincts today.
Related Breeds
Border Collie
Sibling breed
Koolie
Sibling breed
Australian Kelpie
Sibling breed
Collie
Cousin breed
Shetland Sheepdog
Cousin breed
Bearded Collie
Cousin breed
Beagle
4 related breeds
Beagle
The Beagle is a scent hound and a great family pet. They are known for being affectionate and having loud voices.
Related Breeds
Harrier
Sibling breed
Bloodhound
Sibling breed
Otterhound
Sibling breed
Basset Hound
Cousin breed
Rottweiler
1 related breed
Rottweiler
Originally used for driving cattle and protecting valuable convoys, Rottweilers are now popular family pets as well as guard, police and military dogs.
Related Breeds
Great Dane
Cousin breed
Pembroke Welsh Corgi
3 related breeds
Pembroke Welsh Corgi
The Pembroke Welsh Corgi is a small, energetic, herding dog that is good with families.
Related Breeds
Cardigan Welsh Corgi
Sibling breed
Collie
Cousin breed
Shetland Sheepdog
Cousin breed

Some images and text courtesy of the AKC, used with permission.

Explore more

Swipe left and right to explore more results, or choose a category below

Family tree

>
Explore an interactive family tree and get a picture of Emily’s family.

Traits

>
Genes for coat color and type, body size and shape, and other characteristics.

Maternal Haplotype

>
Through the DNA inherited from Emily’s mother we can trace her ancestry back to where dogs and people first became friends. Find out how far Emily’s family has traveled.

Paternal Haplotype

>
The Y-Chromosome is only passed down from father to son. Emily’s DNA includes a story of where her father’s ancestors came from. We’ll show you more about how we categorize his ancestors all based of the science of genetics.

What’s your dog’s story?

Now that you have explored what’s behind Emily find out what your dog’s DNA has to tell you. Embark tells you more about your dog than you ever thought possible. Are you ready? Let’s go!

Through Emily’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1e

Haplotype

A2a

Map

A1e

Emily’s Haplogroup

This female lineage likely stems from some of the original Central Asian wolves that were domesticated into modern dogs starting about 15,000 years ago. It seemed to be a fairly rare dog line for most of dog history until the past 300 years, when the lineage seemed to “explode” out and spread quickly. What really separates this group from the pack is its presence in Alaskan village dogs and Samoyeds. It is possible that this was an indigenous lineage brought to the Americas from Siberia when people were first starting to make that trip themselves! We see this lineage pop up in overwhelming numbers of Irish Wolfhounds, and it also occurs frequently in popular large breeds like Bernese Mountain Dogs, Saint Bernards and Great Danes. Shetland Sheepdogs are also common members of this maternal line, and we see it a lot in Boxers, too. Though it may be all mixed up with European dogs thanks to recent breeding events, its origins in the Americas makes it a very exciting lineage for sure!

A2a

Emily’s Haplotype

Part of the large A1e haplogroup, we see this haplotype in village dogs up and down the Americas as well as French Polynesia. Among the breed dogs we have detected it in, we see it most frequently in English Springer Spaniels, Papillons, and Collies.

Some other Embark dogs with this haplotype:

Irish Wolfhounds are a consistent carrier of A1e.

Explore more

Swipe left and right to explore more results, or choose a category below

Family tree

>
Explore an interactive family tree and get a picture of Emily’s family.

Traits

>
Genes for coat color and type, body size and shape, and other characteristics.

Breed Families

>
Dog breeds have been created over time for work and companionship. Find out about other dog breeds related to the breeds found in Emily.

Paternal Haplotype

>
The Y-Chromosome is only passed down from father to son. Emily’s DNA includes a story of where her father’s ancestors came from. We’ll show you more about how we categorize his ancestors all based of the science of genetics.

What’s your dog’s story?

Now that you have explored what’s behind Emily find out what your dog’s DNA has to tell you. Embark tells you more about your dog than you ever thought possible. Are you ready? Let’s go!

This 'Paternal Haplotype' tab is for deep ancestral lineage going back thousands of years.

For recent ancestry—"What breeds did my dog inherit from her mom and dad?"—please refer to the Breed or Summary tab and the Family Tree tab.

The Paternal Haplotype refers to a dog’s deep ancestral lineage stretching back thousands of years, before there were any distinct breeds of dog. We determine the Paternal Haplotype by looking at a dog’s Y-chromsome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Emily is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Explore more

Swipe left and right to explore more results, or choose a category below

Family tree

>
Explore an interactive family tree and get a picture of Emily’s family.

Traits

>
Genes for coat color and type, body size and shape, and other characteristics.

Breed Families

>
Dog breeds have been created over time for work and companionship. Find out about other dog breeds related to the breeds found in Emily.

Maternal Haplotype

>
Through the DNA inherited from Emily’s mother we can trace her ancestry back to where dogs and people first became friends. Find out how far Emily’s family has traveled.

What’s your dog’s story?

Now that you have explored what’s behind Emily find out what your dog’s DNA has to tell you. Embark tells you more about your dog than you ever thought possible. Are you ready? Let’s go!