Darla

Miniature Schnauzer

  • Photo of Darla, a Miniature Schnauzer  in McAllen, Texas, USA Photo of Darla, a Miniature Schnauzer  in McAllen, Texas, USA
    Darla with her newly repaired, stuffing-less, squeak-less Baby Lambchop.

“Darla was rescued in McAllen Texas in November 2019. Rescue Dogs Rock brought her to NYC in March 2020, where she rescued ME. Vets estimate she is 8 years old but she has a ton of energy. She's battled a lot of fear and insecurity in the big noisy City but she's slowly gaining confidence. She's friendly to all people, reactive to all dogs, (we're working on it), deadly to all squirrels (as it should be), and OBSESSED with her Baby Lambchop. Oh, and food. She'll eat ANYTHING.”

Place of Birth
McAllen, Texas, USA
Current Location
New York, New York, USA
From
McAllen, TX, USA

This dog has been viewed 180 times and been given 2 wags

Registration

Microchip: 985113003610790

Genetic Breed Result

Learn how it’s done

Miniature Schnauzer

100.0% Miniature Schnauzer
Miniature Schnauzer Miniature Schnauzer
Miniature Schnauzers are an alert and spirited breed with guard dog tendencies.
Learn More
Start a conversation! Message this dog’s humans.

Genetic Stats


Wolfiness

0.6 % LOW Learn More

Predicted Adult Weight
Genetic Age
62 human years Learn More
Based on the date of birth provided

Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:

Explore by tapping the parents and grandparents.

Breed Reveal Video

Loading...

Our algorithms predict this is the most likely family tree to explain Darla’s breed mix, but this family tree may not be the only possible one.

Explore the genetics behind your dog’s appearance and size.
Base Coat Color

Base Coat Color

Dark or Light Fur
E (Extension) Locus
Can have dark fur
Red Pigment Intensity LINKAGE
I (Intensity) Loci
Any light fur likely white or cream
Brown or Black Pigment
B (Brown) Locus
Black or gray fur and skin
Color Dilution
D (Dilute) Locus
Dark (non-dilute) fur and skin
Coat Color Modifiers

Coat Color Modifiers

Hidden Patterning
K (Dominant Black) Locus
More likely to have patterned fur
Body Pattern
A (Agouti) Locus
Agouti (Wolf Sable) coat color pattern
Facial Fur Pattern
E (Extension) Locus
No dark mask or grizzle facial fur patterns
Saddle Tan
No impact on coat pattern
White Spotting
S (White Spotting) Locus
Likely to have little to no white in coat
Merle
M (Merle) Locus
Unlikely to have merle pattern
Harlequin
No impact on coat pattern
Other Coat Traits

Other Coat Traits

Furnishings LINKAGE
Likely furnished (mustache, beard, and/or eyebrows)
Coat Length
Likely short or mid-length coat
Shedding
Likely light shedding
Coat Texture
Coat would likely be curly or wavy if long
Hairlessness (Xolo type) LINKAGE
Very unlikely to be hairless
Hairlessness (Terrier type)
Very unlikely to be hairless
Oculocutaneous Albinism Type 2 LINKAGE
Likely not albino
Other Body Features

Other Body Features

Muzzle Length
Likely short muzzle
Tail Length
Likely normal-length tail
Hind Dew Claws
Unlikely to have hind dew claws
Back Muscling & Bulk (Large Breed)
Likely normal muscling
Eye Color LINKAGE
Less likely to have blue eyes
Body Size

Body Size

Body Size 1
Smaller
Body Size 2
Larger
Body Size 3
Larger
Body Size 4
Smaller
Body Size 5
Larger
Performance

Performance

Altitude Adaptation
Normal altitude tolerance
Appetite LINKAGE
Normal food motivation

Through Darla’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1e

Haplotype

A276

Map

A1e

Darla’s Haplogroup

This female lineage likely stems from some of the original Central Asian wolves that were domesticated into modern dogs starting about 15,000 years ago. It seemed to be a fairly rare dog line for most of dog history until the past 300 years, when the lineage seemed to “explode” out and spread quickly. What really separates this group from the pack is its presence in Alaskan village dogs and Samoyeds. It is possible that this was an indigenous lineage brought to the Americas from Siberia when people were first starting to make that trip themselves! We see this lineage pop up in overwhelming numbers of Irish Wolfhounds, and it also occurs frequently in popular large breeds like Bernese Mountain Dogs, Saint Bernards and Great Danes. Shetland Sheepdogs are also common members of this maternal line, and we see it a lot in Boxers, too. Though it may be all mixed up with European dogs thanks to recent breeding events, its origins in the Americas makes it a very exciting lineage for sure!

A276

Darla’s Haplotype

Part of the large A1e haplogroup, this haplotype has been spotted in village dogs in French Polynesia. Among breeds, it occurs in both small (French Bulldog, Miniature Schnauzers, Dachshunds) and large (Great Danes, Bullmastiffs) breeds.

Some other Embark dogs with this haplotype:

Irish Wolfhounds are a consistent carrier of A1e.

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Darla inherited from her mom and dad? Check out her breed breakdown and family tree.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Darla is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.