“Twixie”
Darcy's Tyme2Parti Twixie

Poodle (Small)

“5th generation of line and quite the parti girl. She has an amazing personality. Fun with a great sense of humor. Loves attention and being a mom. She is my baby girl.”

Place of Birth
Denison, Iowa, USA
Current Location
Denison, Iowa, USA
From
Denison, Iowa, USA

This dog has been viewed 1034 times and been given 2 wags

Registration

AKC: PR20347301
Microchip: 985113001106737

Genetic Breed Result

Learn how it’s done

Poodle (Small)

100.0% Poodle (Small)
Poodle (Small) Poodle (Small)
A highly intelligent and playful dog, Miniature and Toy Poodles make for great lap dogs and companions.
Learn More
Start a conversation! Message this dog’s owner.

Genetic Stats


Predicted Adult Weight
Genetic Age
41 human years Learn More
Based on the date of birth provided

Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:

Explore by tapping the parents and grandparents.

Our algorithms predict this is the most likely family tree to explain Twixie’s breed mix, but this family tree may not be the only possible one.

Health Summary

Twixie is at increased risk for one genetic health condition.

And inherited two variants that you should learn more about.

Intervertebral Disc Disease (Type I)

Twixie inherited one copy of the variant we tested

How to interpret this result

Twixie has one copy of an FGF4 retrogene on chromosome 12. In some breeds such as Beagles, Cocker Spaniels, and Dachshunds (among others) this variant is found in nearly all dogs. While those breeds are known to have an elevated risk of IVDD, many dogs in those breeds never develop IVDD. For mixed breed dogs and purebreds of other breeds where this variant is not as common, risk for Type I IVDD is greater for individuals with this variant than for similar dogs.

What is Intervertebral Disc Disease (Type I)?

Type I Intervertebral Disc Disease (IVDD) is a back/spine issue that refers to a health condition affecting the discs that act as cushions between vertebrae. With Type I IVDD, affected dogs can have a disc event where it ruptures or herniates towards the spinal cord. This pressure on the spinal cord causes neurologic signs which can range from a wobbly gait to impairment of movement. Chondrodystrophy (CDDY) refers to the relative proportion between a dog’s legs and body, wherein the legs are shorter and the body longer. There are multiple different variants that can cause a markedly chondrodystrophic appearance as observed in Dachshunds and Corgis. However, this particular variant is the only one known to also increase the risk for IVDD.

Progressive Retinal Atrophy, prcd

Twixie inherited one copy of the variant we tested

What does this result mean?

This result should not impact Twixie’s health but it could have consequences for siblings or other related dogs if they inherited two copies of the variant. We recommend discussing this result with their owners or breeders if you are in contact.

Impact on Breeding

Your dog carries this variant and will pass it on to ~50% of her offspring.

What is Progressive Retinal Atrophy, prcd?

PRA-prcd is a retinal disease that causes progressive, non-painful vision loss. The retina contains cells, called photoreceptors, that collect information about light and send signals to the brain. There are two types of photoreceptors: rods, for night vision and movement, and cones, for day vision and color. This type of PRA leads to early loss of rod cells, leading to night blindness before day blindness.


ALT Activity

Twixie inherited both copies of the variant we tested

Why is this important to your vet?

Twixie has two copies of a variant in the GPT gene and is likely to have a lower than average baseline ALT activity. ALT is a commonly used measure of liver health on routine veterinary blood chemistry panels. As such, your veterinarian may want to watch for changes in Twixie's ALT activity above their current, healthy, ALT activity. As an increase above Twixie’s baseline ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is ALT Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

Breed-Relevant Genetic Conditions

Von Willebrand Disease Type I (VWF)

Identified in Small Poodles

GM2 Gangliosidosis (HEXB, Poodle Variant)

Identified in Small Poodles

Neonatal Encephalopathy with Seizures, NEWS (ATF2)

Identified in Small Poodles

Osteochondrodysplasia (SLC13A1)

Identified in Small Poodles

Additional Genetic Conditions

Explore the genetics behind your dog’s appearance and size.
Coat Color

Coat Color

E Locus (MC1R)
No dark mask or grizzle (Ee)
K Locus (CBD103)
More likely to have a mostly solid black or brown coat (KBky)
A Locus (ASIP)
Not expressed (ayat)
D Locus (MLPH)
Dark areas of hair and skin are not lightened (DD)
B Locus (TYRP1)
Black or gray hair and skin (BB)
Saddle Tan (RALY)
Not expressed (NI)
S Locus (MITF)
Likely solid colored, but may have small amounts of white (Ssp)
M Locus (PMEL)
No merle alleles (mm)
H Locus (Harlequin)
No harlequin alleles (hh)
Other Coat Traits

Other Coat Traits

Furnishings (RSPO2) LINKAGE
Likely furnished (mustache, beard, and/or eyebrows) (FF)
Coat Length (FGF5)
Likely long coat (TT)
Shedding (MC5R)
Likely light shedding (CT)
Coat Texture (KRT71)
Likely curly coat (TT)
Hairlessness (FOXI3) LINKAGE
Very unlikely to be hairless (NN)
Hairlessness (SGK3)
Very unlikely to be hairless (NN)
Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE
Likely not albino (NN)
Other Body Features

Other Body Features

Muzzle Length (BMP3)
Likely medium or long muzzle (CC)
Tail Length (T)
Likely normal-length tail (CC)
Hind Dewclaws (LMBR1)
Unlikely to have hind dew claws (CC)
Blue Eye Color (ALX4) LINKAGE
Less likely to have blue eyes (NN)
Back Muscling & Bulk, Large Breed (ACSL4)
Likely normal muscling (CC)
Body Size

Body Size

Body Size (IGF1)
Smaller (II)
Body Size (IGFR1)
Smaller (AA)
Body Size (STC2)
Intermediate (TA)
Body Size (GHR - E191K)
Intermediate (GA)
Body Size (GHR - P177L)
Intermediate (CT)
Performance

Performance

Altitude Adaptation (EPAS1)
Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE
Normal food motivation (NN)

Through Twixie’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

B1

Haplotype

B42

Map

B1

Darcy's Tyme2Parti Twixie’s Haplogroup

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

B42

Darcy's Tyme2Parti Twixie’s Haplotype

Part of the large B1 haplogroup, this haplotype occurs most commonly in Maltese, Bichon Frises, and village dogs in Java, Peru, and Costa Rica.

Some other Embark dogs with this haplotype:

The B1 haplogroup can be found in village dogs like the Peruvian Village Dog, pictured above.

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Twixie inherited from her mom and dad? Check out her breed breakdown and family tree.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Twixie is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.