Embark logo

Dakota

No bio has been provided yet

Current Location
Dallas, Texas, USA

This dog has been viewed 154 times and been given 1 wag

Genetic Breed Result

Learn how it’s done
24.6% Gray Wolf
23.6% Alaskan Malamute
21.0% Siberian Husky
20.2% German Shepherd Dog
10.6% Australian Shepherd
Start a conversation! Message this dog’s humans.

Genetic Stats


Wolfiness

28.7 % HIGH Learn More

Predicted Adult Weight
Genetic Age
19 human years Learn More
Based on the date of birth provided

DNA Breed Origins

What’s this?
Breed colors:
Gray Wolf
Alaskan Malamute
Siberian Husky
German Shepherd Dog
Australian Shepherd

Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:

Health Summary

Good news!

Dakota is not at increased risk for the genetic health conditions that Embark tests.

Breed-Relevant Genetic Conditions

Multiple Drug Sensitivity

Identified in Australian Shepherds and German Shepherd Dogs

Factor VII Deficiency

Identified in Alaskan Malamutes

Hemophilia A

Identified in German Shepherd Dogs

Hemophilia A

Identified in German Shepherd Dogs

Canine Leukocyte Adhesion Deficiency Type III, CLADIII

Identified in German Shepherd Dogs

Platelet factor X receptor deficiency, Scott Syndrome

Identified in German Shepherd Dogs

Progressive Retinal Atrophy, prcd

Identified in Australian Shepherds

Collie Eye Anomaly

Identified in Australian Shepherds

Day Blindness

Identified in German Shepherd Dogs

Canine Multifocal Retinopathy

Identified in Australian Shepherds

Hereditary Cataracts

Identified in Australian Shepherds

Urate Kidney & Bladder Stones

Identified in Australian Shepherds and German Shepherd Dogs

Anhidrotic Ectodermal Dysplasia

Identified in German Shepherd Dogs

Renal Cystadenocarcinoma and Nodular Dermatofibrosis

Identified in German Shepherd Dogs

Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII

Identified in German Shepherd Dogs

Neuronal Ceroid Lipofuscinosis 6, NCL 6

Identified in Australian Shepherds

Neuronal Ceroid Lipofuscinosis

Identified in Australian Shepherds

GM1 Gangliosidosis

Identified in Siberian Huskies

Degenerative Myelopathy, DM

Identified in German Shepherd Dogs

Polyneuropathy, NDRG1 Malamute Variant

Identified in Alaskan Malamutes

Craniomandibular Osteopathy, CMO

Identified in Australian Shepherds

Additional Genetic Conditions


Clinical Tools

Explore the genetics behind your dog’s appearance and size.
Base Coat Color

Base Coat Color

Dark or Light Fur
E (Extension) Locus
Can have dark fur
Brown or Black Pigment
B (Brown) Locus
Black or gray fur and skin
Color Dilution
D (Dilute) Locus
Dark (non-dilute) fur and skin
Coat Color Modifiers

Coat Color Modifiers

Hidden Patterning
K (Dominant Black) Locus
More likely to have patterned fur
Body Pattern
A (Agouti) Locus
Agouti (Wolf Sable) coat color pattern
Facial Fur Pattern
E (Extension) Locus
No dark mask or grizzle facial fur patterns
Saddle Tan
No impact on coat pattern
Merle
M (Merle) Locus
Unlikely to have merle pattern
Other Coat Traits

Other Coat Traits

Furnishings LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows)
Coat Length
Likely short or mid-length coat
Shedding
Likely heavy/seasonal shedding
Coat Texture
Coat would likely be curly or wavy if long
Hairlessness (Xolo type) LINKAGE
Very unlikely to be hairless
Hairlessness (Terrier type)
Very unlikely to be hairless
Oculocutaneous Albinism Type 2 LINKAGE
Likely not albino
Other Body Features

Other Body Features

Muzzle Length
Likely medium or long muzzle
Tail Length
Likely normal-length tail
Hind Dew Claws
Likely to have hind dew claws
Back Muscling & Bulk (Large Breed)
Likely normal muscling
Eye Color LINKAGE
Less likely to have blue eyes
Body Size

Body Size

Body Size 1
Larger
Body Size 2
Larger
Body Size 3
Larger
Body Size 4
Larger
Body Size 5
Larger
Performance

Performance

Altitude Adaptation
Normal altitude tolerance
Appetite LINKAGE
Normal food motivation

Through Dakota’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

B1

Haplotype

B45

Map

B1

Dakota’s Haplogroup

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

B45

Dakota’s Haplotype

Part of the large B1 haplogroup, this haplotype occurs most commonly in Yorkshire Terriers, Doberman Pinschers, Cocker Spaniels, and village dogs in Costa Rica.

Some other Embark dogs with this haplotype:

The B1 haplogroup can be found in village dogs like the Peruvian Village Dog, pictured above.

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Dakota inherited from her mom and dad? Check out her breed breakdown and family tree.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Dakota is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.