Venn diagram

Compare your dogs to Cambria Select one to begin:

Cambria

Mixed Ancestry

Smarter dog care powered by DNA
SHOP NOW

No bio has been provided yet

Current Location

Antioch, CA, USA

This dog has been viewed and been given 2 wags

Genetic Breed Result

Siberian Husky

Bred initially in Northern Siberia, the Siberian Husky is a medium-sized working dog who is quick and light on their feet. Their moderately compact and well furred body, erect ears and brush tail suggest their Northern heritage. Huskies are very active and energetic and are known for being long distance sled dogs.

Learn More

American Eskimo Dog

American Eskimo Dogs belong to the spitz family and they actually came from Germany. They got their start in American circuses due to their intelligence. Today, Eskies make wonderful family pets.

Learn More

Pomeranian

The Pomeranian is a cocky, animated companion with an extroverted personality.

Learn More

Start a conversation! Message this dog’s owner.

Genetic Stats

Predicted Adult Weight

29 lbs

Genetic Age
30 human years

Based on the date of birth provided

DNA Breed Origins

Breed colors:
Siberian Husky
American Eskimo Dog
Pomeranian

Explore

Would you like more information? You can contact us at:

Health Summary

warn icon

Cambria inherited one variant that you should learn more about.

And one variant that you should tell your vet about.

Progressive Retinal Atrophy, prcd

warn icon

Cambria inherited one copy of the variant we tested

What does this result mean?

This result should not impact Cambria’s health but it could have consequences for siblings or other related dogs if they inherited two copies of the variant. We recommend discussing this result with their owners or breeders if you are in contact.

Impact on Breeding

Your dog carries this variant and will pass it on to ~50% of her offspring.

What is Progressive Retinal Atrophy, prcd?

PRA-prcd is a retinal disease that causes progressive, non-painful vision loss. The retina contains cells, called photoreceptors, that collect information about light and send signals to the brain. There are two types of photoreceptors: rods, for night vision and movement, and cones, for day vision and color. This type of PRA leads to early loss of rod cells, leading to night blindness before day blindness.

ALT Activity

warn icon

Cambria inherited one copy of the variant we tested

Why is this important to your vet?

Cambria has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Cambria has this genotype, as ALT is often used as an indicator of liver health and Cambria is likely to have a lower than average resting ALT activity. As such, an increase in Cambria’s ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is ALT Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

Breed-Relevant Genetic Conditions

good icon

Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant)

Identified in American Eskimo Dogs

Methemoglobinemia (CYB5R3)

Identified in Pomeranians

Progressive Retinal Atrophy, rcd3 (PDE6A)

Identified in Pomeranians

X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR)

Identified in Siberian Huskies

Primary Lens Luxation (ADAMTS17)

Identified in American Eskimo Dogs

Urate Kidney & Bladder Stones (SLC2A9)

Identified in Pomeranians

GM1 Gangliosidosis (GLB1 Exon 15, Alaskan Husky Variant)

Identified in Siberian Huskies

Degenerative Myelopathy, DM (SOD1A)

Identified in American Eskimo Dogs

Oculocutaneous Albinism, OCA (SLC45A2, Pekingese Variant)

Identified in Pomeranians

Hereditary Vitamin D-Resistant Rickets (VDR)

Identified in Pomeranians

Additional Genetic Conditions

good icon

Explore

Explore the genetics behind your dog’s appearance and size.

Coat Color

Coat Color

E Locus (MC1R)
No dark mask or grizzle (EE)
K Locus (CBD103)
More likely to have a mostly solid black or brown coat (KBky)
Intensity Loci LINKAGE
No impact on coat pattern (Intermediate Red Pigmentation)
A Locus (ASIP)
Not expressed (ayaw)
D Locus (MLPH)
Dark areas of hair and skin are not lightened (DD)
B Locus (TYRP1)
Black or gray hair and skin (Bb)
Saddle Tan (RALY)
Not expressed (NN)
S Locus (MITF)
Likely flash, parti, piebald, or extreme white (spsp)
M Locus (PMEL)
No merle alleles (mm)
H Locus (Harlequin)
No harlequin alleles (hh)
Other Coat Traits

Other Coat Traits

Furnishings (RSPO2) LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows) (II)
Coat Length (FGF5)
Likely short or mid-length coat (GT)
Shedding (MC5R)
Likely heavy/seasonal shedding (CC)
Hairlessness (FOXI3) LINKAGE
Very unlikely to be hairless (NN)
Hairlessness (SGK3)
Very unlikely to be hairless (NN)
Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE
Likely not albino (NN)
Coat Texture (KRT71)
Likely straight coat (CC)
Other Body Features

Other Body Features

Muzzle Length (BMP3)
Likely medium or long muzzle (CC)
Tail Length (T)
Likely normal-length tail (CC)
Hind Dewclaws (LMBR1)
Unlikely to have hind dew claws (CC)
Blue Eye Color (ALX4) LINKAGE
Likely to have blue eyes or partial blue eyes (DupDup)
Back Muscling & Bulk, Large Breed (ACSL4)
Likely normal muscling (CC)
Body Size

Body Size

Body Size (IGF1)
Larger (NN)
Body Size (IGFR1)
Intermediate (GA)
Body Size (STC2)
Intermediate (TA)
Body Size (GHR - E191K)
Larger (GG)
Body Size (GHR - P177L)
Larger (CC)
Performance

Performance

Altitude Adaptation (EPAS1)
Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE
Normal food motivation (NN)
Embark Logo Learn more about Embark

Explore

Through Cambria’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

C1

Haplotype

C39

Map

C1

Cambria’s Haplogroup

Congratulations, C1 is a very exotic female lineage! It is more closely associated with maternal lineages found in wolves, foxes and jackals than with other dog lineages. So it seems dogs in this group have a common male dog ancestor who, many thousands of years ago, mated with a female wolf! This is not a common lineage in any breed, though a good number of German Shepherds and Doberman Pinchers are C1. It is also found in breeds as diverse as Peruvian Inca Orchids and Pekingese; it is rarely found amongst Labrador Retrievers, Border Collies, Siberian Huskies, or Cocker Spaniels. Despite its fascinating origins, it is widely distributed around the globe, and even shows up frequently among Peruvian village dogs. It almost certainly survived at low frequency in Europe for millennia and then was dispersed outside of Europe by colonialism, though not as successfully as some other lineages.

C39

Cambria’s Haplotype

Part of the C1 haplogroup, this haplotype occurs most frequently in Pomerianians and Xoloitzcuintli.

Some other Embark dogs with this haplotype:

The C1 maternal line is commonly found in Jackals.

Embark Logo Learn more about Embark

Explore

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Cambria inherited from her mom and dad? Check out her breed breakdown.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Cambria is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Embark Logo Learn more about Embark

Explore