Venn diagram

Compare your dogs to Brie Select one to begin:

Brie

American Foxhound

Smarter dog care powered by DNA
SHOP NOW

“Adopted from animal shelter near Chase City, VA. Found on roadside after being hit by a car and suffering a broken hip. Was emaciated at the time. Now healed and tending to the plump side. Very sweet and affectionate. Loves her toys, both balls and stuffed animals.”

Current Location

Chase City, VA, USA

This dog has been viewed and been given 24 wags

Genetic Breed Result

Loading...

American Foxhound

American Foxhounds, the American cousin of the English Foxhounds, are a lucky breed because their history and ancestry are well documented. They came over to the New World in 1650 with a man named Robert Brooke, who sailed from England to Crown Colony in North America (now modern day Maryland and Virginia). This pack of hunting dogs, beloved by the Brooke Family for hundreds of years, evolved to become the American Foxhound. The Brooke hounds were likely mixed with French hounds that were also brought to the Americas, and it was this mix of European breeds that eventually gave us our beloved American Foxhound.

Learn More

Start a conversation! Message this dog’s humans.

Genetic Stats

Wolfiness

0.9 % MEDIUM

Predicted Adult Weight

41 lbs

Genetic Age
58 human years

Based on the date of birth provided

Explore

Would you like more information? You can contact us at:

Explore by tapping the parents and grandparents.

Breed Reveal Video

Our algorithms predict this is the most likely family tree to explain Brie’s breed mix, but this family tree may not be the only possible one.

Embark Logo Learn more about Embark

Explore

Health Summary

good icon

Good news!

Brie is not at increased risk for the genetic health conditions that Embark tests.

Breed-Relevant Genetic Conditions

good icon

Factor VII Deficiency

Identified in American Foxhounds

Additional Genetic Conditions

good icon

Clinical Tools

good icon

Explore

Explore the genetics behind your dog’s appearance and size.

Base Coat Color

Base Coat Color

Dark or Light Fur
E (Extension) Locus
Can have dark fur
Dark brown pigment
Cocoa
No impact on fur and skin color
Red Pigment Intensity LINKAGE
I (Intensity) Loci
Any light fur likely yellow or tan
Brown or Black Pigment
B (Brown) Locus
Black or gray fur and skin
Color Dilution
D (Dilute) Locus
Dark (non-dilute) fur and skin
Coat Color Modifiers

Coat Color Modifiers

Hidden Patterning
K (Dominant Black) Locus
More likely to have patterned fur
Body Pattern
A (Agouti) Locus
Black/Brown and tan coat color pattern
Facial Fur Pattern
E (Extension) Locus
No dark mask or grizzle facial fur patterns
Saddle Tan
Likely saddle tan patterned
White Spotting
S (White Spotting) Locus
Likely to have some white areas in coat
Roan LINKAGE
R (Roan) Locus
Likely no impact on coat pattern
Merle
M (Merle) Locus
Unlikely to have merle pattern
Harlequin
No impact on coat pattern
Other Coat Traits

Other Coat Traits

Furnishings LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows)
Coat Length
Likely short or mid-length coat
Shedding
Likely heavy/seasonal shedding
Coat Texture
Likely straight coat
Hairlessness (Xolo type) LINKAGE
Very unlikely to be hairless
Hairlessness (Terrier type)
Very unlikely to be hairless
Oculocutaneous Albinism Type 2 LINKAGE
Likely not albino
Other Body Features

Other Body Features

Muzzle Length
Likely medium or long muzzle
Tail Length
Likely normal-length tail
Hind Dew Claws
Unlikely to have hind dew claws
Back Muscling & Bulk (Large Breed)
Likely normal muscling
Eye Color LINKAGE
Less likely to have blue eyes
Body Size

Body Size

Body Size 1
Larger
Body Size 2
Larger
Body Size 3
Larger
Body Size 4
Larger
Body Size 5
Larger
Performance

Performance

Altitude Adaptation
Normal altitude tolerance
Appetite LINKAGE
Normal food motivation
Embark Logo Learn more about Embark

Explore

Through Brie’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1d

Haplotype

A424

Map

A1d

Brie’s Haplogroup

This female lineage can be traced back about 15,000 years to some of the original Central Asian wolves that were domesticated into modern dogs. The early females that represent this lineage were likely taken into Eurasia, where they spread rapidly. As a result, many modern breed and village dogs from the Americas, Africa, through Asia and down into Oceania belong to this group! This widespread lineage is not limited to a select few breeds, but the majority of Rottweilers, Afghan Hounds and Wirehaired Pointing Griffons belong to it. It is also the most common female lineage among Papillons, Samoyeds and Jack Russell Terriers. Considering its occurrence in breeds as diverse as Afghan Hounds and Samoyeds, some of this is likely ancient variation. But because of its presence in many modern European breeds, much of its diversity likely can be attributed to much more recent breeding.

A424

Brie’s Haplotype

Part of the A1d haplogroup, this haplotype occurs most frequently in American Pit Bull Terriers, Barbets, and Staffordshire Terriers.

Some other Embark dogs with this haplotype:

The vast majority of Rottweilers have the A1d haplogroup.

Embark Logo Learn more about Embark

Explore

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Brie inherited from her mom and dad? Check out her breed breakdown and family tree.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Brie is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Embark Logo Learn more about Embark

Explore