Details: Required resource app-9d849c934c.js was not loaded.
Please note that genetic age is different from calendar age. We cannot (yet) estimate calendar age—how long since your dog was born—from DNA. To learn how vets estimate calendar age you can read How old is your dog? How veterinarians estimate dog age.
The genetic age that we report is an estimation of where your dog is in his or her healthspan. Dogs age at very different rates due to a number of genetic and environmental factors. Body size is a strong genetic influence: for example, a seven year old Great Dane is at the start of his golden years, but a seven year old Pomeranian is just learning what "slow down" means. Just within this example, you can see that the old "one doggie year = seven human years" adage isn’t going to work. And yet, knowing your dog’s age is important: it informs what your dog needs as far as food, frequency of veterinary checkups, and exercise. So how do you best determine how old your dog is?
Embark's genetic age feature calculates how old your dog would be if he or she were aging at an average human rate (using humans in the USA as the baseline). So going back to our Dane/Pom example, we'd estimate a seven year old Great Dane at about 80 years old (senior citizen), but a seven year old Pom would be about 42 (adult). Makes way more sense, right?
Calendar age | Genetic age |
---|---|
1 year | 17 human years |
2 years | 25 human years |
3 years | 31 human years |
4 years | 37 human years |
5 years | 44 human years |
6 years | 50 human years |
7 years | 57 human years |
8 years | 63 human years |
9 years | 70 human years |
10 years | 76 human years |
11 years | 83 human years |
12 years | 89 human years |
13 years | 96 human years |
14 years | 102 human years |
15 years | 108 human years |
16 years | 115 human years |
17 years | 120 human years |
18 years | 120 human years |
All we need from you is a calendar age. It's okay if this is an estimation: it is just a starting point. We then factor in your dog's breed composition, information at certain genes that affect size, and their inbreeding coefficient to calculate genetic age. Like in humans, in dogs females tend to live longer than males (so an “80 year old” female dog = 80 year old woman). Exercise and diet also play a role in how long your dog will live. Nevertheless, genetic age is the primary risk factor for numerous diseases in dogs, including cancer, kidney disease, osteoarthritis, cataracts, cardiac disease and cognitive decline. It can help you and your vet know what you should feed your dog, what screenings to get, and other aspects of your dog’s care.
Most dogs have wolfiness scores of 1% or less. We find populations and breeds with higher scores of 2-4% occasionally, and unique dogs with scores of 5% or above more rarely.
Your dog’s Wolfiness Score is not a measure of recent dog-wolf hybridization and does not necessarily indicate that your dog has some recent wolf ancestors. (If your dog has recent wolf ancestors, you will see that in the breed mix report.) Instead, the Wolfiness Score is based on the number of ancient genetic variants your dog has in our unique Wolfiness marker panel. Wolfiness scores up to 10% are almost always due to ancient wolf genes that survived many generations, rather than any recent wolf ancestors. These ancient genes may be a few thousand years old, or may even date back to the original domestication event 15,000 years ago. They are bits of a wild past that survive in your dog!
Your dog’s Wolfiness Score is based on hundreds of markers across the genome where dogs (or almost all of them) are the same, but wolves tend to be different. These markers are thought to be related to "domestication gene sweeps" where early dogs were selected for some trait. Scientists have known about “domestication gene sweeps” for years, but do not yet know why each sweep occurred. By finding rare dogs carrying an ancient variant at a certain marker, we can make associations with behavior, size, metabolism, and development that likely caused these unique signatures of “doggyness” in the genome.
For people with puppies, you probably want to know how big of a crate to buy or just how big to expect your dog to become. But genetic weight is also useful for people with fully grown dogs. Just like with people, overweight and obese dogs suffer reduced length and quality of life. They can develop chronic health conditions and suffer from limited mobility and other issues. While over half of American dogs are overweight or obese, fewer than 15% of their owners realize it. By comparing your dog’s weight to their genetic predicted weight you have one more piece of information about their ideal weight. With this and other pieces of information like weight history and body condition, you and your veterinarian may want to discuss your dog’s diet, exercise, and weight control plan to give your pup the longest, healthiest life possible.
Our test is the only dog DNA test that provides true genetic size not based just on breed ancestry but based on over a dozen genes known to influence a dog’s weight. It uses the most advanced science to determine your dog’s expected weight based on their sex, the combination of these genes, and breed-specific modifiers.
Unlike in people, healthy weight in dogs is controlled largely by only a few genes. Our algorithm explains over 85% of the variance in healthy adult weight. However, due to a few as-yet-undiscovered genes and genetic interactions that affect size, this algorithm sometimes misses. Occasionally it misses by a fairly large amount especially when a dog has a breed with an unknown size-influencing gene. If we have missed your dog’s weight, your dog may be a scientific discovery waiting to happen! Please be sure to go to the Research tab and complete the Nutrition & Exercise assessment, where you can answer the question "Has your dog been weighed in the past 3 months, and if so how much does he or she weigh" by telling us your dog’s actual weight. This information will inform our ongoing research into weight, nutrition and exercise in dogs.
Haplotypes are particular DNA sequences that are inherited entirely from a dog’s mom (maternal) or dad (paternal).
Because they are inherited whole, your dog and his or her mom share the exact same maternal haplotype. If you have a male dog, your dog and his dad share the exact same paternal haplotype (female dogs don’t inherit paternal haplotypes).
Because most breeds were started with only a few individual dogs, many breeds are dominated by only one or a few haplotypes.
Haplogroups are groups of similar DNA sequences (called haplotypes) that are inherited entirely from the mother (maternal) or father (paternal) and don’t get shuffled up like other parts of your dog’s genome.
These groups all originally descend from one male or female wolf, usually one that lived tens of thousands of years ago. Because they are inherited whole and not shuffled like other DNA, they can be used to trace the ancestral routes that dogs took around the globe en route to your home.
Only male dogs have paternal haplogroups because they are determined by the Y chromosome, which only male dogs have. Both males and females have maternal haplogroups, which come from a part of DNA called the mitochondrial DNA.
All dogs are related and share some DNA. Siblings share lots of their DNA (half of it in fact), cousins share a bit less (an eighth), and so on. Because dog breeds are made up of a closed group of dogs, all dogs in that breed share a lot of their DNA, typically about as much as second cousins, though it varies by breed. Different breeds that are closely related share somewhat less DNA, and dogs from very different breeds share even less DNA (but still much more DNA than either dog shares with a cat).
DNA is inherited in pieces, called chromosomes, that are passed along from parent to offspring. Each generation, these chromosomes are broken up and shuffled a bit in a process known as recombination. So, the length of the segments your dog shares with his ancestors decreases with each generation above him: he shares longer segments with his mom than his grandma, longer segments with his grandma than his great-grandma, and so on.
We can use the length of segments Bandit shares with our reference dogs to see how many generations it has been since they last shared an ancestor. Long segments of DNA that are identical to known purebred dogs tell Embark's scientists that Bandit has, without a doubt, a relative from that breed. By testing over 200,000 genetic markers, we build up his genes one DNA segment at a time, to learn the ancestry with great certainty. Other dog DNA tests look at many fewer genetic markers and have to take a guess at breed ancestry based on that.
Look closely and you'll probably find Bandit has some physical and/or behavioral resemblance with his ancestor's breeds. The exact similarity depends on which parts of DNA Bandit shares with each breed. Some traits associated with each breed are listed in the Breed & Ancestry section of our website. Embark will tell you even more about Bandit's traits soon!
P.S. In a small proportion of cases, we find dogs that don’t share segments with other dogs we have tested, indicating the presence of a rare breed that is not part of our reference panel or possibly a true "village dog" without any purebred relatives at all. In these rare cases we contact the owner to find out more and let them know about their unique dog before they get their results. With this in-depth detective work, we are pushing science forward by identifying genetically unique groups of dogs.
Let us know with our contact form or by email at howdy@embarkvet.com.
Yes! Some dogs descend from other dogs that were themselves mixed breed. These other dogs can give small contributions to the ancestry of your dog, so small that they are no longer recognizable as any one particular breed. We call this portion unresolved or “Supermutt” since it confers super powers! Just kidding. But we do think supermutts really are super!
“Bandit was rescued from a kill shelter in Ga. He was rescued and bought to Florida. We were driving by the pet adoption in a shopping mall and my husband said stop. He thought Bandit from his face might be a Saint Bernard puppy. He wasn't but by the time I parked the car my husband had fallen in love. Bandit came home to join our two other dogs. Bandit and my husband had a special bond and he never left his side while he was dealing with side effects from chemotherapy. I know he still look”
Wolfiness: | 0.3 % LOW Learn More |
Predicted Adult Weight: | 61 lbs Learn More |
Genetic Age: | 97 human years Learn More |
Explore other Embark dogs who have breed mixes that are similar to Bandit’s.
A Mix Match of 100 means they are the exact same breed mix!
Basha
|
Pablo
|
Clyde McQueen
|
Charlie
|
|
|
|
|
Mix Match: 62
|
Mix Match: 62
|
Mix Match: 61
|
Mix Match: 59
|
Cooper
|
Bella
|
Emmylou
|
Max
|
|
|
|
|
Mix Match: 59
|
Mix Match: 59
|
Mix Match: 59
|
Mix Match: 58
|
Marley
|
Frederick P. Grumbly
|
Rupert
|
Ellie
|
|
|
|
|
Mix Match: 57
|
Mix Match: 57
|
Mix Match: 57
|
Mix Match: 56
|
Watson
|
Nash
|
Milo
|
Dolly
|
|
|
|
|
Mix Match: 55
|
Mix Match: 55
|
Mix Match: 55
|
Mix Match: 55
|
Loretta Lynn
|
Radar
|
Scrappy
|
Bogey
|
|
|
|
|
Mix Match: 54
|
Mix Match: 53
|
Mix Match: 53
|
Mix Match: 53
|
See which breed every part of Bandit’s DNA comes from!
Dogs have 39 pairs of chromosomes, almost double humans who have 23. 38 of those pairs are the same for all dogs while the 39th is the sex chromosomes - two X’s for females and one X and one Y for males. One copy of each chromosome came from your dog’s mother and one from your dog’s father. Each copy contains between 24 million and 123 million bases, or letters of DNA code, for 2.5 billion total letters inherited from each parent. This chromosome illustration shows a representation of each of your dog’s 38 pairs of chromosomes (excluding the X and Y sex chromosomes).
Because the members of a breed have similar stretches of DNA, we can use our 200,000+ genetic markers to determine what part of each chromosome in your dog came from what breed. For each pair of chromosomes, your dog’s mom and dad each gave your dog one copy of that chromosome, for a grand total of 78 chromosomes. So if your dog’s mom was a poodle and dad was a schnauzer then the painting would show one complete poodle and one complete schnauzer chromosome for each pair. The more complex your dog’s ancestry, the more complex the painting, as in each generation recombination (the splitting apart and "shuffling around" of genes between paired chromosomes) mixes up bits of chromosome from grandparents, great-grandparents, and beyond.
Each trait your dog exhibits, such as fur shedding, is based on the letter at one or more locations in your dog’s genome. For example the location determining if your dog sheds their fur is located on chromosome 1. Some other traits, like size, are complexly inherited from many locations, including ones on chromosomes 1, 3, 4, 7, 10, 15, and more. Your dog looks the way it does not because of averaging or blending the breeds that form it, but because specific traits were inherited from specific breeds. That’s one reason your mix may look, act, and have certain health issues much more like one breed than another!
Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:
Our algorithms predict this is the most likely family tree to explain Bandit’s breed mix, but this family tree may not be the only possible one.
DNA sequences that are close together on a chromosome tend to be inherited together. Because of this, we can use genetic variation surrounding a mutation (i.e. "linked" to it) to infer the presence or absence of a mutation of interest.
Linkage tests do not directly assay a mutation of interest; therefore, they may not be perfectly predictive of your dog’s true genotype.
A number of genes are known to affect coat color in dogs, and they all interact. In some cases, other genetic effects may also influence color and pattern.
Controls the characteristic melanistic mask seen in the German Shepherd and Pug as well as the grizzled "widow's peak" of the Afghan and Borzoi. Melanistic mask (Em) is dominant to grizzle (Eg) which is dominant to black (E) and red (e). Dogs that are EE or Ee are able to produce normal black pigment, but its distribution will be dependent on the genotypes at the K and A Loci. Dogs that are ee will be a shade of red or cream regardless of their genotype at K and A. The shade of red, which can range from a deep copper like the Irish Setter to the near-white of some Golden Retrievers, is dependent on other genetic factors including the Intensity (I) Locus, which has yet to be genetically mapped.
Want to help us map I Locus? If you haven't already, complete your ee pup's Embark profile with a photo! Remember, a picture is worth a thousand words!
Citations: Schmutz et al 2003 , Dreger and Schmutz 2010 , , Ollivier et al 2017
More information: http://www.doggenetics.co.uk/masks.html
Causes a dominant black coat. Dogs with a dominant KB allele have black coats regardless of their genotype at the A locus; the coat color of dogs homozygous for the recessive ky allele are controlled by A locus. Alleles: KB > ky
Citations: Candille et al 2007
More information: http://www.doggenetics.co.uk/black.htm
Why doesn't Bandit have an exact genotype at this locus?
This locus actually includes several alleles. At the time this dog was genotyped Embark can distinguish some, but not all, of the possible alleles at this location.
Determines whether hair pigment is produced in a banded red and black pattern or solid black. Fawn or sable (ay) is dominant to wolf sable (aw) which is dominant to black-and-tan (at), which is in turn dominant to recessive black (a).
Citations: Berryere et al 2005 , Dreger and Schmutz 2011 ,
More information: http://www.doggenetics.co.uk/tan.html
Lightens a black coat to blue and a red coat to buff. A dilute phenotype requires two copies of the recessive d allele.
Citations: Drogemuller et al 2007
More information: http://www.doggenetics.co.uk/dilutes.html
Lightens a black coat to brown, chocolate or liver. The brown phenotype requires two copies of the recessive b allele. Red or cream dogs that carry two b alleles remain red or cream but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley" in Labrador Retrievers).
Citations: Schmutz et al 2002
More information: http://www.doggenetics.co.uk/liver.html
Furnishings, shedding and curls are all genetic! And they all interact, too. In fact, the combination of these genes explains the coat phenotypes of 90% of AKC registered dog breeds.
The FGF5 gene is known to affect hair length in many different species, including cats, dogs, mice, and humans! The "T" allele confers a long, silky haircoat as observed in the Yorkshire Terrier and the Long Haired Whippet. The ancestral "G" allele causes a shorter coat as seen in the Boxer or the American Staffordshire Terrier.
Citations: Housley & Venta 2006 , Cadieu et al 2010
This mutation affects shedding propensity. Dogs with the ancestral C allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with one or more T allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be low shedders. Note that dogs with furnished/wire-haired coats tend to be low shedders regardless of their genotype at this gene!
Citations: Hayward et al 2016
Causes the curly coat characteristic of Poodles and Bichon Frises. Dogs need at least one copy of the "T" allele to have a wavy or curly coat; the ancestral "C" allele is associated with a straight coat.
Citations: Cadieu et al 2010
This mutation in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Chinese Crested (other hairless breeds have different mutations). Dogs with the "N/Dup" genotype are likely to be hairless while dogs with the "N/N" genotype are likely to have a normal coat.
Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.
Citations: Drogemuller et al 2008
Dogs with two copies (D/D) of this 4 kilobase deletion in the SLC45A2 gene have oculocutaneous albinism type 2 (OCA2), a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion (N/D) will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.
Citations: Winkler et al 2014
More information on coat type genetics: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897713/figure/F3/
Other Embark dogs with these Coat Traits genes:
Affects skull size and shape. Many brachycephalic or "smushed face” breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived A allele. Mesocephalic (Staffordshire Terrier, Labrador) and dolichocephalic (Whippet, Collie) dogs have one, or more commonly two, copies of the ancestral C allele. At least five different genes affect snout length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes.
Citations: Schoenbeck et al 2012
Common in certain breeds, hind dewclaws are extra, nonfunctional digits located midway between your dog's paw and hock. Dogs with at least one copy of the T allele have about a 50% of chance of having hind dewclaws.
Citations: Park et al 2008
This mutation has been associated by Embark researchers with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of a duplication (Dup) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. N/N dogs do not carry this duplication, but may have blue eyes due to other factors.
Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.
Want to help us better understand eye color genetics? If you haven't already, complete your pup's Embark profile with a photo clearly showing their eyes and be sure to fill out the "Doggie Parts" survey in the research section of their results!
Citations: Deane-Coe et al 2018
Body size is a complex trait that is affected by both genetic and environmental variation. Our genetic analysis includes genes that, together, explain over 80% of the variation in dog body size. It does not account for runting or stunting; nor does it account for the interactions between various genes both known and unknown.
This mutation causes dogs to be especially tolerant of low oxygen environments (hypoxia). Dogs with at least one A allele are less susceptible to "altitude sickness." This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.
Citations: Gou et al 2014
Through Bandit’s mitochondrial DNA we can trace his mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.
B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.
Part of the large B1 haplogroup, this haplotype occurs most commonly in Basset Hounds, West Highland White Terriers, and village dogs in Namibia.
Some other Embark dogs with this haplotype:
Through Bandit’s Y-chromosome we can trace his father’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.
Some of the wolves that became the original dogs in Central Asia around 15,000 years ago came from this long and distinguished line of male dogs. After domestication, they followed their humans from Asia to Europe and then didn't stop there. They took root in Europe, eventually becoming the dogs that founded the Vizsla breed 1,000 years ago. The Vizsla is a Central European hunting dog, and all male Vizslas descend from this line. During the Age of Exploration, like their owners, these pooches went by the philosophy, "Have sail, will travel!" From the windy plains of Patagonia to the snug and homey towns of the American Midwest, the beaches of a Pacific paradise, and the broad expanse of the Australian outback, these dogs followed their masters to the outposts of empires. Whether through good fortune or superior genetics, dogs from the A1a lineage traveled the globe and took root across the world. Now you find village dogs from this line frolicking on Polynesian beaches, hanging out in villages across the Americas, and scavenging throughout Old World settlements. You can also find this "prince of patrilineages" in breeds as different as German Shepherds, Golden Retrievers, Pugs, Border Collies, Scottish Terriers, and Irish Wolfhounds. No male wolf line has been as successful as the A1a line!
Part of the large A1a haplogroup, this haplotype is found in village dogs from across the globe (outside of Asia). As for breeds, it is primarily seen in German Shepherds, Labrador Retrievers, Nova Scotia Duck Tolling Retriever. It is by far the most common haplotype in German Shepherds.
Some other Embark dogs with this haplotype: