Venn diagram

Compare your dogs to Ayla Select one to begin:

Ayla

Smarter dog care powered by DNA
SHOP NOW

No bio has been provided yet

Place of Birth

Oregon, USA

Current Location

Oregon, USA

From

Oregon, USA

This dog has been viewed and been given 19 wags

Registration

Microchip: 985141001264807

Genetic Breed Result

Start a conversation! Message this dog’s humans.

Genetic Stats

Wolfiness

3.7 % HIGH

Predicted Adult Weight

51 lbs

Genetic Age
45 human years

Based on the date of birth provided

DNA Breed Origins

Breed colors:
Alaskan Malamute
German Shepherd Dog
Samoyed
Siberian Husky
Gray Wolf

Explore

Would you like more information? You can contact us at:

Health Summary

warn icon

Ayla has one variant that you should let your vet know about.

ALT Activity

warn icon

Ayla inherited one copy of the variant we tested

Why is this important to your vet?

Ayla has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Ayla has this genotype, as ALT is often used as an indicator of liver health and Ayla is likely to have a lower than average resting ALT activity. As such, an increase in Ayla’s ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is ALT Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

Breed-Relevant Genetic Conditions

good icon

Multiple Drug Sensitivity

Identified in German Shepherd Dogs

Factor VII Deficiency

Identified in Alaskan Malamutes

Hemophilia A

Identified in German Shepherd Dogs

Hemophilia A

Identified in German Shepherd Dogs

Canine Leukocyte Adhesion Deficiency Type III, CLAD III

Identified in German Shepherd Dogs

X-Linked Progressive Retinal Atrophy 1, XL-PRA1

Identified in Samoyeds and Siberian Huskies

Day Blindness

Identified in German Shepherd Dogs

Urate Kidney & Bladder Stones

Identified in German Shepherd Dogs

X-Linked Hereditary Nephropathy, XLHN

Identified in Samoyeds

Anhidrotic Ectodermal Dysplasia

Identified in German Shepherd Dogs

Renal Cystadenocarcinoma and Nodular Dermatofibrosis

Identified in German Shepherd Dogs

Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII

Identified in German Shepherd Dogs

GM1 Gangliosidosis

Identified in Siberian Huskies

Degenerative Myelopathy, DM

Identified in German Shepherd Dogs

Polyneuropathy, AMPN

Identified in Alaskan Malamutes

Additional Genetic Conditions

good icon

Explore

Explore the genetics behind your dog’s appearance and size.

Base Coat Color

Base Coat Color

Dark or Light Fur
E (Extension) Locus
Can have dark fur
Red Pigment Intensity LINKAGE
I (Intensity) Loci
Any light fur likely white or cream
Brown or Black Pigment
B (Brown) Locus
Black or gray fur and skin
Color Dilution
D (Dilute) Locus
No Call
Coat Color Modifiers

Coat Color Modifiers

Hidden Patterning
K (Dominant Black) Locus
More likely to have patterned fur
Body Pattern
A (Agouti) Locus
Fawn Sable coat color pattern
Facial Fur Pattern
E (Extension) Locus
No dark mask or grizzle facial fur patterns
Saddle Tan
No impact on coat pattern
White Spotting
S (White Spotting) Locus
Likely to have some white areas in coat
Merle
M (Merle) Locus
Unlikely to have merle pattern
Harlequin
No impact on coat pattern
Other Coat Traits

Other Coat Traits

Furnishings LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows)
Coat Length
Likely short or mid-length coat
Shedding
Likely heavy/seasonal shedding
Coat Texture
Likely straight coat
Hairlessness (Xolo type) LINKAGE
Very unlikely to be hairless
Hairlessness (Terrier type)
Very unlikely to be hairless
Oculocutaneous Albinism Type 2 LINKAGE
Likely not albino
Other Body Features

Other Body Features

Muzzle Length
Likely medium or long muzzle
Tail Length
Likely normal-length tail
Hind Dew Claws
Unlikely to have hind dew claws
Back Muscling & Bulk (Large Breed)
Likely normal muscling
Eye Color LINKAGE
Less likely to have blue eyes
Body Size

Body Size

Body Size 1
Larger
Body Size 2
Larger
Body Size 3
Larger
Body Size 4
Larger
Body Size 5
Larger
Performance

Performance

Altitude Adaptation
Normal altitude tolerance
Appetite LINKAGE
Normal food motivation
Embark Logo Learn more about Embark

Explore

Through Ayla’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1a

Haplotype

A266

Map

A1a

Ayla’s Haplogroup

A1a is the most common maternal lineage among Western dogs. This lineage traveled from the site of dog domestication in Central Asia to Europe along with an early dog expansion perhaps 10,000 years ago. It hung around in European village dogs for many millennia. Then, about 300 years ago, some of the prized females in the line were chosen as the founding dogs for several dog breeds. That set in motion a huge expansion of this lineage. It's now the maternal lineage of the overwhelming majority of Mastiffs, Labrador Retrievers and Gordon Setters. About half of Boxers and less than half of Shar-Pei dogs descend from the A1a line. It is also common across the world among village dogs, a legacy of European colonialism.

A266

Ayla’s Haplotype

Part of the large A1a haplogroup, this uncommon haplotype occurs in dogs with European ancestry.

Some other Embark dogs with this haplotype:

Shar Pei dogs think A1a is the coolest!

Embark Logo Learn more about Embark

Explore

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Ayla inherited from her mom and dad? Check out her breed breakdown.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Ayla is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Embark Logo Learn more about Embark

Explore