Abby Gail CGC

Labrador Retriever

“Passionate Retriever! Devoted and loyal....”

Place of Birth
Woodinville, Washington, USA
Current Location
Seattle, Washington, USA

This dog has been viewed 1626 times and been given 44 wags

Registration

AKC: SR64544804

Genetic Breed Result

Learn how it’s done

Labrador Retriever

100.0% Labrador Retriever
Labrador Retriever Labrador Retriever
The Labrador Retriever was bred for hunting and excelled in retrieving game after it was shot down. Known for its gentle disposition and loyalty, the Labrador Retriever has become a favorite of families and breeders alike.
Learn More
Start a conversation! Message this dog’s humans.

Genetic Stats


Wolfiness

0.0 % LOW Learn More

Predicted Adult Weight
Genetic Age
79 human years Learn More
Based on the date of birth provided

Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:

Explore by tapping the parents and grandparents.

Our algorithms predict this is the most likely family tree to explain Abby Gail’s breed mix, but this family tree may not be the only possible one.

Health Summary

Abby Gail inherited one variant that you should learn more about.

Exercise-Induced Collapse

Abby Gail inherited one copy of the variant we tested

What does this result mean?

This result does not impact your dog’s health. It could have consequences for siblings or other family members, and you should let them know if you are in contact with them. This result is also important if you decide to breed this dog - to produce the healthiest puppies we recommend genetic testing any potential mates for this condition.

What is Exercise-Induced Collapse?

EIC has been linked to a mutation in the DNM1 gene, which codes for the protein dynamin. In the neuron, dynamin trucks neurotransmitter-filled vesicles from the cell body, where they are generated, to the dendrites. It is hypothesized in dogs affected with EIC, the mutation in DNM1 disrupts efficient neurotransmitter release, leading to a cessation in signalling and EIC.

Breed-Relevant Genetic Conditions

Canine Elliptocytosis

Identified in Labrador Retrievers

Pyruvate Kinase Deficiency

Identified in Labrador Retrievers

Progressive Retinal Atrophy, prcd

Identified in Labrador Retrievers

Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2

Identified in Labrador Retrievers

Progressive Retinal Atrophy - crd4/cord1

Identified in Labrador Retrievers

Day Blindness

Identified in Labrador Retrievers

Macular Corneal Dystrophy, MCD

Identified in Labrador Retrievers

Urate Kidney & Bladder Stones

Identified in Labrador Retrievers

Alexander Disease

Identified in Labrador Retrievers

Narcolepsy

Identified in Labrador Retrievers

Centronuclear Myopathy

Identified in Labrador Retrievers

X-Linked Myotubular Myopathy

Identified in Labrador Retrievers

Congenital Myasthenic Syndrome

Identified in Labrador Retrievers

Hereditary Nasal Parakeratosis

Identified in Labrador Retrievers

Skeletal Dysplasia 2, SD2

Identified in Labrador Retrievers

Additional Genetic Conditions


Clinical Tools

Explore the genetics behind your dog’s appearance and size.
Base Coat Color

Base Coat Color

Dark or Light Fur
E (Extension) Locus
Light colored fur (cream to red)
Brown or Black Pigment
B (Brown) Locus
Likely black colored nose/feet
Color Dilution
D (Dilute) Locus
Dark (non-dilute) skin
Coat Color Modifiers

Coat Color Modifiers

Hidden Patterning
K (Dominant Black) Locus
No impact on coat color
Body Pattern
A (Agouti) Locus
No impact on coat pattern
Facial Fur Pattern
E (Extension) Locus
No dark fur anywhere
White Spotting
S (White Spotting) Locus
Likely to have little to no white in coat
Other Coat Traits

Other Coat Traits

Furnishings LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows)
Coat Length
Likely short or mid-length coat
Shedding
Likely heavy/seasonal shedding
Coat Texture
Coat would likely be curly or wavy if long
Hairlessness (Xolo type) LINKAGE
Very unlikely to be hairless
Oculocutaneous Albinism Type 2 LINKAGE
Likely not albino
Other Body Features

Other Body Features

Muzzle Length
Likely medium or long muzzle
Tail Length
Likely normal-length tail
Hind Dew Claws
Unlikely to have hind dew claws
Eye Color LINKAGE
Less likely to have blue eyes
Body Size

Body Size

Body Size 1
Intermediate
Body Size 2
Larger
Body Size 3
Larger
Body Size 4
Larger
Body Size 5
Larger
Performance

Performance

Altitude Adaptation
Normal altitude tolerance
Appetite LINKAGE
Likely to be more food motivated

Through Abby Gail’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1a

Haplotype

A16/17/99/100

Map

A1a

Abby Gail’s Haplogroup

A1a is the most common maternal lineage among Western dogs. This lineage traveled from the site of dog domestication in Central Asia to Europe along with an early dog expansion perhaps 10,000 years ago. It hung around in European village dogs for many millennia. Then, about 300 years ago, some of the prized females in the line were chosen as the founding dogs for several dog breeds. That set in motion a huge expansion of this lineage. It's now the maternal lineage of the overwhelming majority of Mastiffs, Labrador Retrievers and Gordon Setters. About half of Boxers and less than half of Shar-Pei dogs descend from the A1a line. It is also common across the world among village dogs, a legacy of European colonialism.

A16/17/99/100

Abby Gail’s Haplotype

Part of the large A1a haplogroup, this common haplotype is found in village dogs across the globe. Among breed dogs, we find it most frequently in Labrador Retrievers, Newfoundlands, German Shepherd Dogs, and Golden Retrievers.

Some other Embark dogs with this haplotype:

Shar Pei dogs think A1a is the coolest!

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Abby Gail inherited from her mom and dad? Check out her breed breakdown and family tree.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Abby Gail is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.