Venn diagram

Compare your dogs to Sterling Select one to begin:

Sterling

Smarter dog care powered by DNA
SHOP NOW

“My sweet girl. She is the inside dog. Loves people. She's the spoiled one.”

Instagram tag
@Sterlingthewolfdogpup

Place of Birth

Ohio, USA

Current Location

Oregon, USA

This dog has been viewed and been given 1 wag

Genetic Breed Result

Start a conversation! Message this dog’s owner.

Genetic Stats

Predicted Adult Weight

61 lbs

Genetic Age
41 human years

Based on the date of birth provided

DNA Breed Origins

Breed colors:
Gray Wolf
German Shepherd Dog
Alaskan Malamute
Siberian Husky

Explore

Would you like more information? Have you found a lost dog wearing an Embark dog tag? You can contact us at:

Health Summary

good icon

Good news!

Sterling is not at increased risk for the genetic health conditions that Embark tests.

Breed-Relevant Genetic Conditions

 icon

Multiple Drug Sensitivity (ABCB1)

Identified in German Shepherd Dogs

Factor VII Deficiency (F7 Exon 5)

Identified in Alaskan Malamutes

Hemophilia A (F8 Exon 11, Shepherd Variant 1)

Identified in German Shepherd Dogs

Hemophilia A (F8 Exon 1, Shepherd Variant 2)

Identified in German Shepherd Dogs

Canine Leukocyte Adhesion Deficiency Type III, CLADIII (FERMT3)

Identified in German Shepherd Dogs

Day Blindness (CNGA3 Exon 7 German Shepherd Variant)

Identified in German Shepherd Dogs

Urate Kidney & Bladder Stones (SLC2A9)

Identified in German Shepherd Dogs

Anhidrotic Ectodermal Dysplasia (EDA Intron 8)

Identified in German Shepherd Dogs

Renal Cystadenocarcinoma and Nodular Dermatofibrosis (FLCN Exon 7)

Identified in German Shepherd Dogs

Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3)

Identified in German Shepherd Dogs

GM1 Gangliosidosis (GLB1 Exon 15 Alaskan Husky Variant)

Identified in Siberian Huskies

Degenerative Myelopathy, DM (SOD1A)

Identified in German Shepherd Dogs

Polyneuropathy, NDRG1 Malamute Variant (NDRG1 Exon 4)

Identified in Alaskan Malamutes

Additional Genetic Conditions

 icon

Clinical Tools

 icon

Explore

Explore the genetics behind your dog’s appearance and size.

Coat Color

Coat Color

E Locus (MC1R)
No dark mask or grizzle (Ee)
K Locus (CBD103)
More likely to have a mostly solid black or brown coat (KBky)
Intensity Loci LINKAGE
No impact on coat pattern (Dilute Red Pigmentation)
A Locus (ASIP)
Not expressed (awa)
D Locus (MLPH)
Dark areas of hair and skin are not lightened (DD)
B Locus (TYRP1)
Black or gray hair and skin (BB)
S Locus (MITF)
Likely flash, parti, piebald, or extreme white (spsp)
H Locus (Harlequin)
hh
Other Coat Traits

Other Coat Traits

Furnishings (RSPO2) LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows) (II)
Coat Length (FGF5)
Likely short or mid-length coat (GG)
Shedding (MC5R)
Likely heavy/seasonal shedding (CC)
Hairlessness (FOXI3) LINKAGE
Very unlikely to be hairless (NN)
Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE
Likely not albino (NN)
Coat Texture (KRT71)
Likely straight coat (CC)
Other Body Features

Other Body Features

Muzzle Length (BMP3)
Likely medium or long muzzle (CC)
Tail Length (T)
Likely normal-length tail (CC)
Hind Dewclaws (LMBR1)
Unlikely to have hind dew claws (CC)
Blue Eye Color (ALX4) LINKAGE
Less likely to have blue eyes (NN)
Body Size

Body Size

Body Size (IGF1)
Larger (NN)
Body Size (IGFR1)
Larger (GG)
Body Size (STC2)
Larger (TT)
Body Size (GHR - E191K)
Larger (GG)
Body Size (GHR - P177L)
Larger (CC)
Performance

Performance

Altitude Adaptation (EPAS1)
Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE
Normal food motivation (NN)
Embark Logo Learn more about Embark

Explore

Through Sterling’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1d

Haplotype

A41

Map

A1d

Sterling’s Haplogroup

This female lineage can be traced back about 15,000 years to some of the original Central Asian wolves that were domesticated into modern dogs. The early females that represent this lineage were likely taken into Eurasia, where they spread rapidly. As a result, many modern breed and village dogs from the Americas, Africa, through Asia and down into Oceania belong to this group! This widespread lineage is not limited to a select few breeds, but the majority of Rottweilers, Afghan Hounds and Wirehaired Pointing Griffons belong to it. It is also the most common female lineage among Papillons, Samoyeds and Jack Russell Terriers. Considering its occurrence in breeds as diverse as Afghan Hounds and Samoyeds, some of this is likely ancient variation. But because of its presence in many modern European breeds, much of its diversity likely can be attributed to much more recent breeding.

A41

Sterling’s Haplotype

Part of the large A1d haplogroup, we have not spotted this haplotype in village dogs yet. We do see it in 3 breeds: Alaskan Malamutes, Bichon Frises, and Posavac Hounds.

Some other Embark dogs with this haplotype:

The vast majority of Rottweilers have the A1d haplogroup.

Embark Logo Learn more about Embark

Explore

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Sterling inherited from her mom and dad? Check out her breed breakdown and family tree.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Sterling is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Embark Logo Learn more about Embark

Explore