Venn diagram

Compare your dogs to Scarlett Select one to begin:

“Scarlett”
Angel's Creek Scarlett

Pomsky

Smarter dog care powered by DNA
SHOP NOW

“Scarlett has the best personality you would ever want from a pomsky. She has the playfulness attitude of a husky, but the cuddliness of a Pomeranian. She has perfect husky markings and the sleekest hair around. She is the best mini husky!”

Instagram tag
@angelscreekpomskies

Current Location

Bradley, Illinois, USA

From

Lancaster, OH, USA

This dog has been viewed and been given 12 wags

Registration

International Pomsky Association (IPA): F11828

Genetic Breed Result

Loading...

Pomeranian

The Pomeranian is a cocky, animated companion with an extroverted personality.

Learn More

Siberian Husky

Bred initially in Northern Siberia, the Siberian Husky is a medium-sized working dog who is quick and light on their feet. Their moderately compact and well furred body, erect ears and brush tail suggest their Northern heritage. Huskies are very active and energetic and are known for being long distance sled dogs.

Learn More

Start a conversation! Message this dog’s owner.

Genetic Stats

Predicted Adult Weight

23 lbs

Genetic Age
40 human years

Based on the date of birth provided

DNA Breed Origins

Breed colors:
Pomeranian
Siberian Husky

Explore

Changes to this dog’s profile
  • On 11/19/2018 changed handle from "pomsky4" to "acpscarlett"
  • On 9/25/2018 changed name from "Pomsky" to "Angel's Creek Scarlett"

Would you like more information? You can contact us at:

Health Summary

warn icon

Scarlett inherited one variant that you should learn more about.

And one variant that you should tell your vet about.

Canine Multifocal Retinopathy, cmr1

warn icon

Scarlett inherited one copy of the variant we tested

What does this result mean?

Because this variant is inherited in an autosomal recessive manner (meaning dogs need two copies of the variant to develop the disease), Scarlett is unlikely to develop this condition due to the variant.

Impact on Breeding

Your dog carries this variant and will pass it on to ~50% of her offspring. You can email breeders@embarkvet.com to discuss with a genetic counselor how the genotype results should be applied to a breeding program.

What is Canine Multifocal Retinopathy, cmr1?

This is a non-progressive retinal disease that, in rare cases, can lead to vision loss. Dogs with larger lesions can suffer from vision loss. CMR is fairly non-progressive; new lesions will typically stop forming by the time a dog is an adult, and some lesions will even regress with time.

ALT Activity

warn icon

Scarlett inherited one copy of the variant we tested

Why is this important to your vet?

Scarlett has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Scarlett has this genotype, as ALT is often used as an indicator of liver health and Scarlett is likely to have a lower than average resting ALT activity. As such, an increase in Scarlett’s ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is ALT Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

Breed-Relevant Genetic Conditions

good icon

Progressive Retinal Atrophy, rcd3 (PDE6A)

Identified in Pomeranians

X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR)

Identified in Siberian Huskies

Urate Kidney & Bladder Stones (SLC2A9)

Identified in Pomeranians

GM1 Gangliosidosis (GLB1 Exon 15, Alaskan Husky Variant)

Identified in Siberian Huskies

Oculocutaneous Albinism, OCA (SLC45A2, Small Breed Variant)

Identified in Pomeranians

Hereditary Vitamin D-Resistant Rickets (VDR)

Identified in Pomeranians

Additional Genetic Conditions

good icon

Explore

Explore the genetics behind your dog’s appearance and size.

Coat Color

Coat Color

E Locus (MC1R)
No dark mask or grizzle (Ee)
K Locus (CBD103)
More likely to have a mostly solid black or brown coat (KBky)
Intensity Loci LINKAGE
No impact on coat pattern (Dilute Red Pigmentation)
A Locus (ASIP)
Not expressed (awat)
D Locus (MLPH)
Dark areas of hair and skin are not lightened (Dd)
B Locus (TYRP1)
Brown hair and skin (bb)
Saddle Tan (RALY)
Not expressed (NI)
S Locus (MITF)
Likely flash, parti, piebald, or extreme white (spsp)
M Locus (PMEL)
No merle alleles (mm)
H Locus (Harlequin)
No harlequin alleles (hh)
Other Coat Traits

Other Coat Traits

Furnishings (RSPO2) LINKAGE
Likely unfurnished (no mustache, beard, and/or eyebrows) (II)
Coat Length (FGF5)
Likely short or mid-length coat (GT)
Shedding (MC5R)
Likely heavy/seasonal shedding (CC)
Hairlessness (FOXI3) LINKAGE
Very unlikely to be hairless (NN)
Hairlessness (SGK3)
Very unlikely to be hairless (NN)
Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE
Likely not albino (NN)
Coat Texture (KRT71)
Likely straight coat (CC)
Other Body Features

Other Body Features

Muzzle Length (BMP3)
Likely medium or long muzzle (CC)
Tail Length (T)
Likely normal-length tail (CC)
Hind Dewclaws (LMBR1)
Unlikely to have hind dew claws (CC)
Blue Eye Color (ALX4) LINKAGE
Likely to have blue eyes or partial blue eyes (NDup)
Back Muscling & Bulk, Large Breed (ACSL4)
Likely normal muscling (CC)
Body Size

Body Size

Body Size (IGF1)
Intermediate (NI)
Body Size (IGFR1)
Larger (GG)
Body Size (STC2)
Intermediate (TA)
Body Size (GHR - E191K)
Intermediate (GA)
Body Size (GHR - P177L)
Intermediate (CT)
Performance

Performance

Altitude Adaptation (EPAS1)
Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE
Normal food motivation (NN)
Embark Logo Learn more about Embark

Explore

Through Scarlett’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1b

Haplotype

A18/19/20/21/27/36/94/109/361

Map

A1b

Angel's Creek Scarlett’s Haplogroup

This female lineage was very likely one of the original lineages in the wolves that were first domesticated into dogs in Central Asia about 15,000 years ago. Since then, the lineage has been very successful and travelled the globe! Dogs from this group are found in ancient Bronze Age fossils in the Middle East and southern Europe. By the end of the Bronze Age, it became exceedingly common in Europe. These dogs later became many of the dogs that started some of today's most popular breeds, like German Shepherds, Pugs, Whippets, English Sheepdogs and Miniature Schnauzers. During the period of European colonization, the lineage became even more widespread as European dogs followed their owners to far-flung places like South America and Oceania. It's now found in many popular breeds as well as village dogs across the world!

A18/19/20/21/27/36/94/109/361

Angel's Creek Scarlett’s Haplotype

Part of the large A1b haplogroup, we see this haplotype in village dogs in over 25 countries across the world. We have detected this haplotype in lots of breeds, and it occurs most commonly in German Shepherd Dogs, Maltese, English Springer Spaniels, and English Setters.

Some other Embark dogs with this haplotype:

A1b is the most common haplogroup found in German Shepherds.

Embark Logo Learn more about Embark

Explore

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Scarlett inherited from her mom and dad? Check out her breed breakdown.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Scarlett is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Embark Logo Learn more about Embark

Explore